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CHAPTER 1. INTRODUCTION 

In this chapter, I briefly present an introduction to remote sensing images and 
its applications in different research areas. Furthermore, the problem of land cover 
classification is also presented. Current progress and challenges in land cover 
classification are discussed. Finally, motivations and problem statement of the research 
are shown in the end of the chapter. 

1.1. Motivation 

Remotely-sensed images have been used for a long time in both military and 
civilization applications. The images could be collected from satellites, airborne 
platforms or Unmanned Aerial Vehicles (UAVs). Among the three, satellite images have 
gained popularity due to large coverage, available data and so on. In general, remotely-
sensed images store information about Earth object’s reflectance of lights, i.e. Sun’s 
light in passive remote sensing  [1]. Therefore, the images contain itself lots of valuable 
information of the Earth’s surface or even under the surface.  

Applications of remotely-sensed images are diverse. For example, satellite 
images could be used in agriculture, forestry, geology, hydrology, sea ice, land cover 
mapping, ocean and coastal  [1]. In agriculture, two important tasks are crop type 
mapping and crop monitoring. Crop type mapping is the process of identification crops 
and its distribution over an area. This is the first step to crop monitoring which includes 
crop yield estimation, crop condition assessment, and so on. To these aims, satellite 
images are efficient and reliable means to derive the required information  [1]. In 
forestry, potential applications could be deforestation mapping, species identification 
and forest fire mapping. In the forest where human access is restricted, satellite imagery 
is an unique source of information for management and monitoring purposes. In 
geology, satellite images could be used for structural mapping and terrain analysis. In 
hydrology, some possible applications cloud be flood delineation and mapping, river 
change detection, irrigation canal leakage detection, wetlands mapping and monitoring, 
soil moisture monitoring, and a lot of other researches. Iceberg detection and tracking is 
also done via satellite data. Furthermore, air pollution and meteorological monitoring 
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could be possible from satellite perspective. In general, many of the applications more 
or less relate to land cover mapping, i.e. agriculture, flood mapping, forest mapping, sea 
ice mapping, and so on.  

Land cover (LC) is a term that refers to the material that lies above the surface 
of the Earth. Some examples of land covers are: plants, buildings, water and clouds. 
Land cover is the thing that reflects or radiates the Sun’s lights which then be captured 
by the satellite’s sensors. Land use and land cover classification (LULCC) has been 
considering as one of the most traditional and important applications in remote sensing 
since LULCC products are essential for a variety of environmental applications  [2]. 
Figure 1 shows a land cover map for Mekong river delta, Vietnam in 2012 derived from 
MODIS images  [3]. This map shows distribution of rice lands in the region. 

 

Figure 1. Rice covers map of Mekong river delta, Vietnam in 2012. 

Regarding land cover classification (LCC), there are currently many researches 
around the world. These researches could be categorized by several criteria such as 
geographical scale of classification, multiple land covers classification or single land 
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cover classification. For the former, LCC can be classified into regional or global 
studies. Regional studies focus on investigating LCC methods for one or more specific 
regions. Global studies concern classification at global scale. There are currently some 
already published global land-cover datasets as presented in Table 1. 

Table 1. Description of seven global land-cover datasets.  

 GLCC UMD GLC2000 MODIS 

LC 

GlobCove

r 

GLCNM

O 

FROM-

GLC 

Sensor AVHRR AVHRR SPOT-4 

VEGETATI

ON 

MODIS MERIS MODIS LANDSA

T 

Acquisitio

n time 

04/1992–

03/1993 

04/1992–

03/1993 

11/1999– 

12/2000 

01/2001– 

12/2002 

12/2004 – 

06/2006 

01/2008 – 

12/2008 

01/2010 – 

12/2010 

Spatial 

resolution 

1 km 1 km 1 km 500 m 300 m 500 m 30 m 

Input data IGBP 1-km 

AVHRR 

10-day 

composite, 

DEM data, 

Ecoregions 

data, 

Maps data. 

41 metrics 

derived 

from  

NDVI and 

AVHRR 

bands 1–5, 

EROS 

urban, 

MODIS  

water 

mask 

Daily 

mosaics of 4 

spectral 

channels and 

NDVI of 

SPOT, 

JERS-1 and 

ERS radar 

data, 

DMSP data, 

DEM 

Monthly 

MODIS 

L2/L3 

composite, 

EOS 

land/water 

mask, 

MODIS  

16-day 

EVI, 

MODIS 8-

day DEM 

MERIS 

L1B data,  

MERIS 

mosaics 

16-day 

composite 

of MODIS 

2008 Data 

MOD44W 

and 

SRTM 

DEM 

Landsat 

TM/ETM

+ (30 

meter), 

MODIS 

EVI time 

series 

(250 

meter) 

Bioclimati

c variables 

(1km) 

global 

DEM 

(1km) 

Classificat

ion 

method 

Classificati

on with 

post- 

classificati

on 

refinement 

Unsupervis

ed 

Decision 

tree 

Unsupervise

d 

classificatio

n 

Decision 

tree, Neural 

networks 

Unsupervi

sed 

classificati

on 

Combined 

method of 

supervised 

classificati

on 

and 

individual 

mapping 

 

Maximum 

likelihood  

(MLC), 

J4.8 

Decision 

tree, 

Random 

forests 

and 

Support 
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vector 

machine 

LC class  17 classes 14 classes 23 classes 17 classes 22 classes 20 classes 10 classes 

Validation 

data 

Landsat 

TM and 

SPOT  

images 

Other 

digital 

datasets 

High 

resolution 

satellite data, 

and ancillary 

information 

High 

resolution 

land cover  

information 

SPOT-

VEGETA

TION 

NDVI, and 

Virtual/Go

ogle Earth 

Integrated 

potential 

map, 

Google 

Earth 

image, 

MODIS 

images 

MODIS 

vegetatio, 

DEM and 

soil-water 

condition 

maps 

Reported 

accuracy 

Globally 

66.9% 

Globally 

69% 

Globally 

68.6 ± 5% 

Globally 

75% 

Globally 

67.1% 

Globally 

77.9% 

Globally 

64.9% 

Although there are many efforts to map land covers globally, the LC accuracies are 
still much lower than regional LC maps. This is understandable as there are many 
challenges in LCC at global scale including diversity of land-cover types, lack of 
ground-truth data, and so on  [4]. In regional studies, the difficulties are more or less 
reduced, thus resulting in more accurate LC maps. Some typical regional LC studies 
could be mentioned, i.e. Hannes et al. investigated Landsat time series (2009 - 2012) for 
separating cropland and pasture in a heterogeneous Brazilian savannah landscape using 
random forest classifier and achieved and overall accuracy of 93%  [5]. Xiaoping Zhang 
et al. used Landsat data to monitor impervious surface dynamics at Zhoushan islands 
from 2006 to 2011 and achieved overall accuracies of 86-88%  [6]. Arvor et al. classified 
five crops in the state of Mato Grosso, Brazil using MODIS EVI time series and their 
OAs ranged from 74 – 85.5%  [7].  

Although land-cover classification (LCC) mapping at medium to high spatial 
resolution is now easier due to availability of medium/high spatial resolution imagery 
such as Landsat 5/7/8  [8], in cloud-prone areas, deriving high resolution LCC maps 
from optical imagery is challenging because of infrequent satellite revisits and lack of 
cloud-free data. This is even more pronounced in land cover with high temporal 
dynamics, i.e. paddy rice or seasonal crops, which require observation of key growing 
stages to correctly identify  [9], [10]. Vietnam is located in a tropical monsoon climate 
frequently covered by cloud  [11], [12]. Some studies used high temporal resolution but 
low spatial resolution images (MODIS)  [13]. Some studies employed single-image 
classifications  [14]. However, common challenges of mono-temporal approaches 
include misclassification between bare land or impervious surface and vegetation cover 
type  [15]. Whereas land cover classification using cloud-free Landsat scenes may lack 
enough observations to capture temporal dynamics of land-cover types. 
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1.2. Objectives, contributions and thesis structure 

To date, land cover classification in cloud-prone areas is challenging. Furthermore, 
efficient LC methods for the regions, especially for areas with high temporal dynamics 
of land covers, are still limited. In this thesis, the aim is to propose a classification 
method for cloud-prone areas with high temporal dynamics of land-cover types. It is 
also the main contribution of the research to current development of land cover 
classification. To assess its classification performance, the proposed method is first 
tested in Hanoi, the capital city of Vietnam. Hanoi is one of the cloudiest areas on Earth 
and has diverse land covers. In particular, the results of this thesis could be applicable 
to other cloudy regions worldwide and to clearer ones also.   

This thesis is organized into five chapters. In chapter 1, I give an introduction to 
remotely-sensed data and its application in various domains. A problem statement is 
also presented. Theoretical backgrounds in remote sensing, compositing methods and 
land cover classification methods are introduced in Chapter 2. Proposed method is 
presented in Chapter 3. Chapter 4 details experiments and results. Finally, some 
conclusions of my thesis are drawn in Chapter 5. 
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CHAPTER 2. THEORETICAL BACKGROUND 

This chapter reviews necessary concepts used in this thesis. Basic knowledge of 
remote sensing science is presented in section 2.1. Section 2.2 introduces satellite 
images and details of Landsat 8 data. Compositing methods for satellite images are 
summarised in section 2.4. Finally, machine learning methods in land cover 
classification are discussed in section 2.5. 

2.1. Remote sensing concepts 

2.1.1. General introduction 

Remote sensing is a science and art that acquires information about an object, an 
area or a phenomenon through the analysis of material obtained by specialized devices. 
These devices do not have a direct contact with the subject, area, or studied phenomena 
(Figure 2)  [1]. 
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Figure 2. The acquisition of data in remote sensing1. 

Electromagnetic waves that are reflected or radiated from an object are the main 
source of information in remote sensing. A remote sensing image provides information 
about the objects in form of radiated energy in recorded wavelengths. Measurements 
and analyses of the spectral reflectance allow extraction of useful information of the 
ground. Equipments used to sense the electromagnetic waves are called sensor. Sensors 
are cameras or scanners mounted on carrying platforms. Platforms carrying sensors are 
called carrier, which can be airplanes, balloons, shuttles, or satellites. Figure 1 shows a 
typical scheme for remote sensing image acquisition. The main source of energy used 
in remote sensing is solar radiation. The electromagnetic waves are sensed by the sensor 
on the receiving carrier. Information about the reflected energy could be processed and 
applied in many fields such as agriculture, forestry, geology, meteorology, environments 
and so on. 

A remote sensing system works in the following model: a beam of light, emitted by 
the sun/the satellite itself, firstly reaches the Earth surface. It is then partially absorbed, 
reflected and radiated back to the atmosphere. In the atmosphere, the beam may also be 

                                              
1 http://tutor.nmmu.ac.za/uniGISRegisteredArea/intake13/Remote%20Sensing%20and%20GIS/sect2pr.pdf 
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absorbed, reflected or radiated for another time. On the sky, the satellite's sensor will 
pick up the beam that is reflected back to it. After that it is the process of transmitting, 
receiving, processing and converting the radiated energy into image data. Finally, 
interpretation and analysis of the image is done to apply in real-life applications. Figure 
3 illustrates typical components of a remote sensing system  [1]. 

 
Figure 3. Introduction of a typical remote sensing system. 

Symbols: 

- A: energy source. 

- B: incoming source. 

- C: the ground target. 

- D: satellite. 

- E: receiving system. 

- F: image analysis system. 

- G: application system. 

2.1.2. Classification of remote sensing systems 

Remote sensing systems can be classified by following criterias: energy source, 
satellite's orbit, spectrum of the receiver, etc  [1].  

Classification based on energy source: passive and active remote sensing systems 
(Figure 4).  
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Figure 4. Passive (left) and active (right) remote sensing systems. 

- Active remote sensing system: the source energy is the light emitted by an 
artificial device, usually the transmitter placed on the flying equipment.  

- Passive remote sensing system: the source energy is the Sun’s light. 

Classification based on orbit (Figure 5):  

- Geostationary satellite: is a satellite with a rotational speed equal to the 
rotational speed of the earth. Relative position of the satellite as compared to 
the earth is stationary.  

- Polar orbital satellite: is a satellite with orbital plane which is perpendicular 
or near perpendicular to the equatorial plane of the earth. The satellite’s 
rotation speed is different from the rotation speed of the earth. It is designed 
so that the recording time on a particular region is the same as the local time. 
And the revisit time for a particular satellite is also fixed. For example, 
Landsat 8 has a revisit time of 16 days2. 

 
 

                                              
2 https://landsat.usgs.gov/landsat‐8 
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Figure 5. Geostationary satellite (left) and Polar orbital satellite (right).  

Classification by receiving spectrum: visible spectrum, thermal infrared, 
microwave,…. 

The sun is the main source of energy for remote sensing in visible and infrared bands. 
Earth surface objects can also emit their energy in thermal infrared spectrum. 
Microwave remote sensing uses ultra-high frequency radiation with a wavelength of one 
to several centimeters. The energy used for active remote sensing is actively generated 
from the transmitter. Radar technology is a type of active remote sensing. Active radar 
emits energy to objects, then captures the radiation which is scattered or reflected from 
the object.  

2.1.3. Typical spectrum used in remote sensing systems 

In fact, there are many different types of light. However, only a few spectral bands 
are used in remote sensing (Figure 6). The following are frequently used.  

- Visible light: are lights whose wavelengths are between 0.4 and 0.76 microns. 
The energy provided by these wave bands plays an important role in remote 
sensing.  

- Near Infrared: are lights whose wavelengths are between 0.77 and 1.34 
microns. 

- Middle Infrared: are lights whose wavelengths are between 1.55 and 2.4 
microns.  
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Figure 6. Typical wavelengths used in remote sensing3. 

- Thermal Infrared: are lights whose wavelengths are between 3 and 22 
microns.  

- Microwave: are lights whose wavelengths are between 1 and 30 microns. 
Atmosphere does not strongly absorb wavelengths greater than 2 centimeters 
which allows day and night energy intake, without the effects of clouds, fog 
or rain.   

2.2. Satellite images 

2.2.1. Introduction  

Satellite images are images of Earth or other planets collected by observation 
satellites. The satellites are often operated by governmental agencies or businesses 
around the world. There are currently many Earth observation satellites and they have 
common characteristics including spatial resolution, spectral resolution, radiometric 
resolution and temporal resolution. A detailed description of each resolution is shown 
below  [1].  

- Spatial resolution: refers to the instantaneous field of view (IFOV) which is 
the area on the ground viewed by the satellite’s sensor. For example, the 
Landsat 8 satellite has 30-meter spatial resolution which means that a Landsat 
8’s pixel covers an area on the Earth's surface of 30m x 30m.  

- Spectral resoalution: spectral resolution describes the ability of the sensor to 

                                              
3 http://www.remote‐sensing.net/concepts.html 
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receive the Sun’s light. If conventional cameras on the phone can only obtain 
wavelengths in the visible range including red, green and blue lights, many 
satellite sensors have possibility to sense many other wavelengths such as 
near infrared, short-wave infrared, and so on. For example, the TIRS sensor 
mounted on Landsat 8 satellite can receive wavelengths ranging from 10.6 to 
12.51 micrometers. 

- Radiometric resolution: the radiometric resolution of a sensor describes the 
ability to distinguish very small differences in light energy. A better 
radiometric resolution can detect small differences in reflection or energy 
output.  

- Temporal resolution: temporal resolution of a satellite is the time interval 
between two successive observations over the same area on the Earth's 
surface. For example, the temporal resolution of Landsat 8 satellite is 16 days. 

There are currently many Earth observation satellites having different spatial 
resolutions, temporal resolutions, radiometric resolutions and spectral resolutions. Table 
2 compares these resolutions of some well-known satellites. 

Table 2. Some featured satellite images 

 Satellite 

image 

Type Typical 

spatial 

resolution 

Spectral 

resolution 

(exclude 

panchromatic) 

Radiometric 

resolution 

Temporal 

resolution  

1 MODIS Optical 250 – 

1000m 

36 bands 12 bits Daily 

2 SPOT 5 Optical 10m 4 bands (Green, 

Red, Near IR, 

SWIR) 

8 bits 2-3 days, 

depending 

on latitude 

3 Landsat 8 Optical 30m 10 bands (Coastal 

-> TIRS2)  

12 bits 16 days 

4 Sentinel 2A Optical 10 – 20m 12 bands (Coastal 

-> SWIR) 

12 bits 10 days 
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2.2.2. Landsat 8 images 

The 8th Landsat satellite - Landsat 8 (Figure 7) was successfully launched into orbit 
on February 12, 2013. This is a joint project between NASA and the US Geological 
Survey. Landsat 8 satellite provides medium resolution images (from 15 to 100 meters), 
with polar coverage.  

 

Figure 7. Landsat 8 images4 

Landsat 8 satellite has two sensors: Operational Land Imager (OLI) and Thermal 
InfraRed Sensor (TIRS). These two sensors provide images at a spatial resolution of 30 
meters for visible/near infrared/infrared bands, 100 meters for thermal bands and 15 
meters for panchromatic band. For the thermal bands, the manufacturer increased their 
spatial resolution up to 30m through a resampling procedure. The ground coverage of a 
Landsat 8 image is limited to 185km x 180km. Satellite altitude reaches 705 km.  

A comparison of Landsat 7 and Landsat 8 bands is provided in Figure 8: 

 

                                              
4 NASA’s Goddard Space Flight Center 
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Figure 8. Landsat 7 and Landsat 8 bands5 

Landsat 8 is programmed to fly around the Earth for 99 minutes, covers the entire 
surface of the Earth for 16 days. With about 400 images acquired per day, Landsat 8 
satellite provides a more accurate view of Earth's variations within 10 years of its life.  

Landsat 8 images are provided to users via the Internet. Each image product is a 
compressed file containing 12 TIFF image files and a metadata file. Landsat 8 images 
are stored in raster format, which means that they are made up of pixels. Each image is 
a grid of pixels. Among the 12 TIFF files, 11 files are numbered from 1 to 11 indicating 
the band number. Each of the files stores energy values that the sensors receive in 16-
bit integer format which is also known as digital numbers (DN) (Table 3). The remaining 
file is a BQA file added by the manufacturer. 

Table 3. Landsat 8 bands6. 

Band Name 
Central wavelength 

(µm) 
Spectral range (µm) 

1 Coastal Aerosol (OLI) 0.443 0.433-0.453 

2 Blue (OLI) 0.482 0.450-0.515 

3 Green (OLI) 0.562 0.525-0.600 

4 Red (OLI) 0.655 0.630-0.680 

                                              
5 Website http://www.imagico.de/map/landsat8.php 
6 Website http://landsat.gsfc.nasa.gov/?page_id=5377 
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5 NIR (OLI) 0.865 0.845-0.885 

6 SWIR 1 (OLI) 1.610 1.560-1.660 

7 SWIR 2 (OLI) 2.200 2.100-2.300 

8 Panchromatic (OLI) 0.590 0.500-0.680 

9 Cirrus (OLI) 1.375 1.360-1.390 

10 Thermal 1 10.8 10.3-11.3 

11 Thermal 2 12.0 11.5-12.5 

In this study, I used Landsat 8 Surface Reflectance images (Figure 8). Landsat 8 
Surface Reflectance data are generated from the Landsat Surface Reflectance Code 
(LaSRC), which makes use of the coastal aerosol band to perform aerosol inversion tests  
[16]. LaSRC has a unique radiative transfer model and it also uses auxiliary climate data 
from MODIS sensor. Figure 9 shows a Landsat 8 image before and after atmospheric 
correction. In the uncorrected image (left), it could be clearly seen impacts of 
atmosphere in blurred areas (exclude cloudy areas). This impact is significantly reduced 
in the corrected image (right). 

Currently, Landsat 8 SR data product contains seven bands including Coastal 
Aerosol, Blue, Green, Red, NIR, SWIR1, SWIR2. Besides, there are also cloud mask 
bands, and some ancillary data. 

 

Figure 9. Comparison of Landsat 8 OLI (left) and SR (right) images. 
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2.3. Compositing methods  

Optical satellite images have a big drawback. In particular, they are heavily impacted 
by clouds. If a region is covered by clouds during its satellite passing time, the recorded 
data is considered lost. Therefore, methods for tackling clouds in optical satellite images 
have been studied by many researchers. Pixel-based image compositing is a paradigm 
in remote sensing science that focuses on creating cloud-free, radiometrically and 
phenologically consistent image composites. The image composites are spatially 
contiguous over large areas  [17]. In the past, some compositing methods for low spatial 
resolution images (i.e. 500x500m or greater) were developed  [18], [19]. Those methods 
were used primarily to reduce the impacts of clouds, aerosol contamination, data volume 
and view angle effects which are inherent in the images. Due to high temporal resolution 
of the satellites, the compositing methods were relatively simple, i.e. use maximum 
Normalized Difference Vegetation Index (NDVI) or minimum view angle to pick an 
appropriate observation for a target pixel. Since the opening of the Landsat archive, 
compositing methods for Landsat images have been developed and benefitted by pre-
existing approaches for MODIS and AVHRR data.  

Recently, a number of best-available-pixel compositing (BAP) methods have been 
proposed for medium/high satellite images. Generally, BAP methods replace cloudy 
pixels with best-quality pixels from a set of candidates through rule-based procedures. 
Selection rules are based on spectral-related information, that is, maximum normalized 
difference vegetation index (NDVI)  [20] and median near-infrared (NIR)  [21]. On 
another approach, Griffiths et al. proposed a BAP method ranking candidate pixels by 
score set such as distance to cloud/cloud shadow, year, and day-of-year (DOY)  [22]. 
This method was improved by incorporating new scores for atmospheric opacity and 
sensor types  [17]. Gómez et al. recently offered a review emphasizing BAP potential 
for monitoring in cloud-persistent areas  [23], which includes applications in forest 
biomass, recovery and species mapping  [24], [25], [26], change detection applications  
[27], and general land-cover applications  [28].   

A summary of several compositing methods is presented in Table 4. 

Table 4. Review of compositing methods for satellite images. 

 Study Satellite 

images 

Method 

1 Hanse

n et al. 

2008  

[29]  

Landsat 

5, 7 

min & ,… , &  

Where:  

: the candidate pixel selected for composition 
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 & : probability of cloud/cloud shadow of the same 

pixel in nth
 candidate image 

If two or more candidate pixels have equal Pcloud&shadow, then 

choose the pixel value closest to a forest reference value (100) 

2 Roy et 

al. 

2010  

[20] 

Landsat 

5, 7 max ,… , , 	 	
max ,… , ,			 	 	

 

Where: 

NDVI: Normalized Difference Vegetation Index 

BTEM: Brightness Temperature 

Eligible candidate pixels must be of minimal cloud, snow, and 

atmospheric contamination 

3 Potap

ov et 

al. 

2011  

[21] 

Landsat 7 min abs 	, … ,
	  

Where: 

NIR: near infrared spectral band 

Only satellite images acquired in growing seasons are eligible 

for ranking procedure 

4 White 

et al. 

2014  

[17] 

Landsat 

5, 7 
max , & , , , . .

2.4. Machine learning methods in land cover study 

Basically, LC classification is a type of classification on image data. Therefore, 
machine learning classifiers are also applicable to LC classification. In fact, there existed 
a huge amount of researches on machine learning classifiers in LCC. These methods 
range from simple thresholding to more advanced approaches such as maximum 
likelihood, logistic regression, decision tree (ID3, C4.5, C5), random forest, support 
vector machine (SVM), artificial neuron network (ANN) and so on  [30], [31], [32], 
[33], [34]. Some well-known classifiers are presented below. 

2.4.1. Logistic Regression 

Logistic regression is a generalized linear model which is often used for 

classification. Suppose the training data represented by {xi, yi}, i = 1, … , k, where x ∈ 
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Rn  is a n-dimensional space vector and y ∈ {1, -1} is a class label. A logistic regression 
model could be written as: 

′  (1)

Where w is the weights vector,  is sigmoid function: 

1
1

         (2) 

To train a logistic regression model, a cost function is defined as: 

, , 1 log 1  
                                   (3)

To optimize weights, gradient descent algorithm is used which incrementally adjust 
weights based on gradient direction of cost function at each training step. Finally, the 
weight vector is updated as follow:  

	  (4)

Where η is learning rate. 

To extend logistic regression from binary classification to multiclass classification, 
one can employ one-vs-all strategy. In this case, each class is trained against other 
classes. A new sample x is assigned to class i if probability of yx = i is the largest of all 
classes. 

2.4.2. Support Vector Machine 

Support Vector Machines (SVM) is a group of supervised learning methods as 
introduced in  [35]. SVMs seeks to find the decision boundary that gives the best 
generalization – also known as the optimal separating hyperplane in multi-dimensional 
space.  

Suppose the training data represented by {xi, yi}, i = 1,…, k, where x ∈ Rn  is a n-

dimensional space vector and y ∈ {1, -1} is a class label. This set of training data can be 
separated by a hyperplane if there exists a vector w = (w1,…, wk) and a scalar b satisfying 
the following inequality: 

yi(wxi + b) -1 + ξi  ≥ 0      ∀y = {+1, -1}            (5)

Where ξi is a slack variable which indicates the distance the data sample is from the 
optimal hyperplane. The objective function can be written as following: 
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1
2 ||w||2 + C∑i=1

k ξi                               (6) 

C is a constant used to control the degree of the penalty associated with training 
samples that occur on the wrong side of the optimal separating hyperplane. C should be 
considered closely for each individual classification task. The optimal hyperplane can 
be identified by minimizing the objective function in Eq. (2) under the constraint in Eq. 
(1). This can be done by utilizing Lagrange multipliers and quadratic programming 
methods. 

The basic approach to SVM classification may be extended to allow for nonlinear 
decision boundaries by mapping the input data into higher-dimensional space H so that 
in the new space, data can be linearly separated. To do this, a kernel function is 
introduced: K(xi, xj) = (ϕ(xi), ϕ(xj)), where an input data sample x can be represented as 
ϕ(x) in the space H. This kernel function allows computing the inner product (ϕ(xi), ϕ(xj)) 
without knowing exactly the representation of the data samples xi and xj in the higher 
space. There exist several kernel function types including polynominal-based and radial 
basis function (RBF) kernels, etc.  

Because SVM was developed as a binary classifier, it is necessary to adapt this 
method to multiclass classification problems. There are two common approaches for 
solving the problem. The first is known as one-against-one method and the second is 
one-against-all method.  

2.4.3. Artificial Neural Network  

In machine learning, Artificial Neural Networks (ANNs) are a group of statistical 
learning models that are inspired by biological neural networks in the human brain [31]. 
In general, an ANN often consists of an interconnected group of neural nodes that 
correspond to the neurons of the human brain. Various types of neural network have 
been developed over the previous decades. The most widely used model is multilayer 
perceptron (MLP), a feed-forward neural network, due to its simplicity to understand 
and interpret. Backpropagation learning algorithm introduced by Rumelhart et al. is the 
most popular algorithm used to train a MLP  [36]. Figure 10 presents a three-layer 
perceptron with three inputs, two outputs, and one hidden layer assembled by five 
neurons: 
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Figure 10. An example of MLP. 

Each neuron has several input links. The inputs are output values from neurons in 
the previous layer. At a particular neuron, the inputs are summed up with certain 
weights, plus a bias term. The sum is then transformed using an activation function f 

which may be different for different neurons. In other words, given the inputs x  of the 

layer, the output y  of the layer n 1 are computed as: 

, ,  

 

   (7) 

There are different activation functions. Some standard functions are: 

Identify function: 

 (8) 

Rectified linear unit (ReLU) function: 

0, 0
, 0 (9) 

Sigmoid function: 

1
1

 (10) 

Tanh function: 
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2
1

1 (11) 

Many studies have concentrated on using ANNs for land-cover discrimination and 
their experiments have suggested these types of models are more accurate than 
traditional statistical methods, i.e. MLC, because ANNs make no prior assumption about 
the normal distribution of the data and can construct complex decision boundaries  [33].  

2.4.4. eXtreme Gradient Boosting 

eXtreme Gradient Boosting (XGBoost) is a new classifier as introduced by Tianqi 
Chen  [37]. XGBoost is now emerging as a powerful tool in many classification 
domains. This classifier has been proved to be very powerful in Kaggle competitions. It 
is an optimized version of Gradient Boosting Machines (GBM). In gradient boosting, 
trees are build sequentially and each new model uses gradient descent algorithm. The 
final model is a result of an addition of multiple functions from the beginning. In 
XGBoost, trees can be built in parallel. It also has an inner paradigm for handing sparse 
input data. Thus it may work in some cases where image data is missing due to clouds. 
The principle difference between boosting methods and conventinal methods is that 
optimization is held on function space in the former methods  [38]. 

A XGBoost model could be written as in Eq. (12): 

yi’	 	Φ xi 	 ,  ∈   (12)

Where F is the function space of base learners, xi is a n-dimensional array input 
vector, yi’ is the function’s prediction. To build the set of functions used in the model, 
the following objective function is used: 

∑ ′ , ∑ Ω   

Ω 	 	
1
2 λ|| ||  is the regularization term where T is the 

number of leaves, w is leaf weights 

(13)

However, the objective function considers functions as its parameter thus cannot be 
trained using traditional methods in Euclide space. Therefore, it is trained in an additive 
manner which fixes what was learned and add one new tree at a time. Furthermore, 
different loss functions could be used in XGBoost, i.e. Gaussian L2, Laplace L1, 
Binomial, Adaboost, Huber, … or any custom function defined by users. Base learners 
could also be specified on purpose.  

2.4.5. Ensemble methods 

Ensembling is an efficient way to improve classification. Random Forest 
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implements a typical ensemble method. In Random Forest, individual tree prediction 
outputs are used for majority voting to derive final prediction. Thus, trees in Random 
Forest are independent to each other. Stacking is another ensemble method. Stacking 
models means there exists several layers of models. The output of the previous layer is 
used to train the next layer. Besides, there are also other ensemble methods, i.e. boosting 
(XGBoost). In this research, I investigate stacking and majority voting methods for 
ensembling of different classifiers. And only the best result is reported. 

2.4.6. Other promising methods 

Deep learning is another powerful tool for classification. It emerged from traditional 
ANN through a series of innovations in training of ANN (activation function, big data, 
increased computing power, and so on). These innovations help to create very large 
neural network architectures. In remote sensing, deep learning is already applied in some 
classifications such as object detection in very high resolution optical images/UAV 
images, roof detection, ship detection  [39], [40] where labelling process could be done 
in an easier manner as compared to coarser satellite images. Deep learning architectures 
(i.e. Convolutional Neural Network) often require a large amount of labelled training 
data in order to achieve good classification performance as compared to traditional 
classifiers. This requirement is not an easy task in many applications. Therefore, deep 
learning for LCC using medium/high satellite images is still limited.    
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CHAPTER 3. PROPOSED LAND COVER CLASSIFICATION 

METHOD  

This chapter presents the proposed land cover classification method. Firstly, I 
introduce the study area in section 3.1. Next, the data used and preprocessing methods 
are presented in section 3.2. Section 3.3 details the proposed method and every of its 
components. Finally, section 3.4 summarizes the evaluation metrics used to assess 
classification performance. 

3.1. Study area 

In this study, I chose Hanoi city as study area (Figure 11). Hanoi is the capital of 
Vietnam, the country’s second largest city covering approximately 3,300 km2, located 
in the centre of Red River Delta (RRD). Hanoi has three basic kinds of terrain including 
a fertile delta, midland region and mountainous zone. The city is mainly divided into 
agricultural area (56.6%) and non-agricultural area (40.6%) in 2010  [41]. In agricultural 
areas, paddy rice is dominant (60.9%) followed by other crops such as maize as well as 
various vegetable crops. Paddy rice is planted two times per year, while crops are grown 
in other dedicated areas. Occasionally, short-season vegetable crops or aquaculture are 
grown before the start of the first rice season. Non-agricultural areas are mostly covered 
by impervious surfaces and mosaicked natural landscape. Accordingly, I investigate 
seven LC classes for Hanoi including paddy rice, cropland, grass/shrub, trees, bare land, 
impervious area and water body. 
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Figure 11. Hanoi city, study area of this study. 

3.2. Data collection 

3.2.1. Reference data 

Official land-use data from Hanoi Environment and Natural Resources Department 
is used for training and testing data selection  [42]. The selection procedure is based on 
stratified random sampling method. This is done separately for training and testing data. 
And these datasets are guaranteed to share no same point on the ground. Since different 
land uses may contain the same land-cover types, I therefore generated 11 strata labelled 
as bare area, long-term crops, short-term crops, forest, grass, impervious area, mudflats, 
rice, water, others and overlap areas of the land use strata. Training and testing data are 
randomly sampled from the strata and then labelled into 7 classes using high resolution 
images of Google Earth and field data (Figure 12). Total numbers of training and testing 
data are 5079 and 2748 points with the training and testing point distribution as 
presented in Table 5. 

Table 5. Training and testing data. 

 Training Testing 

Crop 596 331 

Bare land 75 56 

Paddy rice 1195 646 
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Water body 773 446 

Tree 997 491 

Impervious area 1049 523 

Grass/Shrub 394 255 

Total 5079 2748 

It is observed that the classes have different numbers of training and testing data. 
For example, in the training data, impervious area and paddy rice have 1049 and 1195 
points respectively. In contrast, bare land has only 75 points. This is due to areal 
difference of these classes in Hanoi. While impervious area and paddy rice are easily 
seen everywhere, bare land is rather rare. However, one important thing for the testing 
data is that the inclusion probability of every individual point is known. When 
randomizing data points, each point has an inclusion probability as presented in equation 
(1): 

PT,i
inclusion 

	
 (14)

In which, PT,i
inclusion is inclusion probability of point i of strata T. In stratified 

random sampling, inclusion probability of a point is determined by the strata to which 
it belongs only, regardless of size of the study area. Inclusion probability is then used to 
weigh individual points in subsequent calculations including producer accuracy, user 
accuracy, overall accuracy and F1-score. This is necessary to ensure that these statistics 
are representative for the study area. Point’s weight is calculated as inverse of inclusion 
probability: 

Wi =  (15)

Figure 11 shows an example of randomized points in Google Earth. Each point is 
represented by a square covering an area of 30x30 meters, which is equal to Landsat 8 
spatial resolution, on the ground. By using Google Earth’s very high resolution images, 
the labelling process is cost-saving, easier and also reliable.   
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Figure 12. Examples of experimental data shown in Google Earth, sampled points are 
represented by while-colored squares over the Google Earth base images. 

3.2.2. Landsat 8 SR data 

To prepare imagery for the 2016 Hanoi land-cover map, all Landsat 8 Surface 
Reflectance (L8SR) images acquired over Hanoi city from 2013 to 2016 are collected 
from the USGS Earth Explorer (https://earthexplorer.usgs.gov/). There are 54 available 
L8SR scenes which are not 100% cloud-contaminated. As Hanoi is covered by two 
consecutive L8SR scenes per revisit (Figure 13), the consecutive images are mosaicked, 
resulting in 27 final images covering entire Hanoi city area (Figure 14). 

 

Figure 13. Landsat 8 footprints over Hanoi. 

After that, I performed some statistics on the images. Figure 12 shows distribution 
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of the images by month and year (Figure 12a), and some cloud cover’s statistics (Figure 
12b). Due to infrequent satellite revisits and frequent cloud covers, there are at least 0 
and at most 2 images per month. Most of the months have 0-1 image only.  

The problem of cloud covers is even more pronounced when it comes to analyse at 
per-image level. From Figure 14b, it is clearly observed that 15 out of 27 images are at 
least 50% covered by cloud. There are only five almost clear images over the 4-year 
period in Hanoi city.  

 

Figure 14. Statistics of Landsat 8 SR images over Hanoi, (a) number of images by year 
and month, (b) cloud coverage percentage per image 

3.2.3. Ancillary data 

Another ancillary data in this study is rice area statistics in 2016 produced by Hanoi 
Statistics Office (http://thongkehanoi.gov.vn/). This statistics include rice planting area 
at provincial level. The official rice area is used to compare with satellite-derived rice 
areas.  

3.3. Proposed method 

Overall flowchart of the method is displayed in Figure 15. The proposed method 
includes four main parts. Firstly, all Landsat 8 SR images are fed to compositing process 
to create a dense time series of cloud-free Landsat 8 images, i.e up to five images which 
is distributed across classification year (2016). After that, the composited images are 
used to extract spectral-temporal features. There will be three independent 
classifications. The first is classification using single image only (single-image 
classification), the second classification uses the whole time-series images with a single 
classifier (XGBoost), last classification is an improved version of the second 
classification with an addition of more features and ensemble of more strong classifiers. 
Finally, those classification models are validated against the testing data and statistical 
data as presented in previous sections.  
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Figure 15. Overall flowchart of the method 

3.3.1. Generation of composite images 

The purpose of this step is to generate a dense, cloud-free time series to capture 
major spectral variations for 2016 land cover classification. The target images for 
compositing were the 5 clearest L8SR images from: 16th May 2016 (DOY 137), 1st 
June 2016 (DOY 153), 17th June 2016 (DOY 169), 21st September 2016 (DOY 265), 
and 7th October 2016 (DOY 281). These images were the targets for the compositing 
process which replaces their own cloud/cloud shadow pixels with best quality pixels 
from the above potential candidate images based on a scoring method as described 
below.  

For each target image, clear pixels remain while cloudy pixels are replaced by a clear 
observation selected from the candidates. I combine two BAP methods proposed in  
[17], [22] and modify the year score and opacity score for compatibility with the 
problem. For each clear pixel in a candidate image, a score is computed based on 4 sub-
scores: year score, DOY score, opacity score and distance from cloud/cloud shadow 
pixel. Those scores could be categorized into: image-level scores and pixel-level scores. 
Year and DOY are image-level scores. This means that every pixel in a particulate 
candidate image shares the same grade. Opacity and distance to cloud/cloud shadow are 
pixel-level scores. Each pixel has its own grade based on the score’s ranking strategy. 
Year score is extended from  [22] for 3 support years instead of 2 in original method. 
Year score decrease with distance from target year (2016) to support years (2015, 2014, 
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2013). DOY score reflects ranges of target day and support days following Gaussian 
distribution. DOY score is computed as follow:  

ScoreDOY = 
√

 
(16)

Where  is the DOY standard deviation, μ is the target DOY and xi is DOY of a 
given candidate image. DOY score concerns only difference in acquisition date 
regardless of acquisition year. The closer candidate DOY to target DOY, the higher 
DOY grade the candidate image possess.  

Distance to cloud/cloud shadow is calculated by a Sigmoid function of distances 
from the pixel to cloud/cloud shadow, obtained from the file sr_cfmask  [43], in radius 
of 50 pixels around. This score is computed as follow: 

ScoreCloud/Shadow_Distance = 
. ∗ ,

	

 (17)

Where Di is a given pixels distance to clouds/cloud shadows, Dreq is pre-defined 
minimum required distance (50 pixels), Dmin is the minimum distance of the given pixel 
observations. Dmin is 0 in this study. The closer to clouds/cloud shadows is the candidate 
pixel, the lower is its grade.  

The opacity score requires an aerosol image as input  [44], but L8SR provides only 
discrete aerosol information (i.e. 4 aerosol levels) in the sr_cloud files. Therefore, I 
assigned opacity scores to the aerosol levels using a sigmoid function. Finally, a pixel's 
total score is derived by summing up the four sub-scores. The candidate pixel owning 
the greatest total score is chosen to replace the clouded pixel in the target image (Table 
6). 

Table 6. Summary of Year score, DOY score, Opacity score and Distance to 
cloud/cloud shadow for L8SR composition 

Year  

DOY  

Opacity  Distance to 
cloud/cloud 

shadow Score Description Score Description 

1.00 2016 
Constraint is 
± 30 days 
from target 
day. 

Scoring by a 
Gaussian 
function. 

0.023 
High aerosol 
content

Constraint is 
50 pixel 
radius from 
considered 
pixel. 

0.68 2015 0.223 
Average aerosol 
content

0.42 2014 0.777 
Low aerosol 
content 

0.22 2013 0.977 
Climatology-level 
aerosol content
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Scoring by a 
Sigmoid 
function.  

Figure 16 shows clear observation count maps for four target images DOY 137, 169, 
265 and 281. It is clear that pixels of DOY 137 and DOY 265 have more cloud-free 
candidates than those of DOY 169 and DOY 281. On average, each clouded pixel in the 
target images has 4-5 candidates for compositing process.   

 

Figure 16. Clear observation count maps for each image used in the compositing process 
(DOY 137, 169, 265, 281) 

3.3.2. Land cover classification 

Three classification methods are investigated as in Figure 13. First, an XGBoost 
classifier is applied on 7 spectral bands of each composite image to obtain 5 LC maps 
for 2016. The second is time-series classification using XGBoost classifier on stack of 
7 spectral bands of 5 composites (i.e. 35 spectral-temporal features). After that, they are 
compared to assess if a time-series of composites is better than individual composites 
for classification. The third improves the time-series composite classification by adding 
Mean Standard Deviations (MSDs) of each band calculated from the composites. Five 
single classifiers (XGBoost, LR, SVM-RBF, SVM-Linear and MLP) and an ensemble 
model using majority voting (i.e. predicted class labels are voted by five classifiers 
having the same weight) are compared. The selection of these classifiers is due to wide 
applications for LCC using SVM and MLP  [31], [33] and  LR  [32] reported in 
literature. Additionally, XGBoost is investigated due to novelty (Chen and Guestrin 
2016) and current lack of LCC applications. Besides these classifiers, Random Forest 
(RF) and K-nearest neighbours (KNN) are also investigated in ensemble method. 
However, RF and KNN achieved lower accuracy as compared to the other classifiers in 
both single-classifier tests and ensemble test. Therefore, RF and KNN are excluded in 
reported experiments. 

All of these classifiers have specific hyper-parameters that require tuning for the best 
classification performance. Specifically, SVM-RBF’s hyper-parameters are penalty (C) 
and gamma. SVM-Linear requires penalty (C) only. Important hyper-parameters 



 
 

35 
 

forming a base architecture of MLP include activation function (activation), number of 
hidden layers (hidden layers) and number of hidden nodes in individual hidden layers 
(hidden nodes). Similar to SVM, LR also has a regularization parameter (C) for 
individual training data importance (Hackeling 2017). XGBoost has many hyper-
parameters in which the three most important ones are the number of boosted trees 
(n_estimators) and two others for over-fitting prevention: maximum tree depth 
(max_depth) and minimum sum of weights of all observations required in a child 
(min_child_weight). 

All classifications were performed on the same training and testing points. To select 
best hyper-parameters for each classifier, 10-fold cross validation and grid-search 
techniques on the training set are used. .Then all training data is used to train classifiers 
with best parameters. Testing sets are separated from training sets to assess trained 
classifiers. Scikit-learn implementation of the classifiers is employed in the experiments 
(http://scikit-learn.org). Scikit-learn is a python-based machine learning library with 
robust tools and easy-to-use interface. It is also built on Python thus is appropriate for 
satellite processing as it can be written with other image processing libraries such as 
Numpy and GDAL. 

3.4. Metrics for classification assessment 

Overall accuracy (OA), kappa coefficient, producer accuracy (PA), user accuracy 
(UA) and F1 score (F1) are used as evaluation metrics in this study  [45], [46]. OA and 
kappa coefficient are computed for classification level. PA, UA and F1 are class 
specific. Formula of the metrics are presented below. 

OA = Ncorrect / Ntotal (18)

UA = NT
correct / NT

classified (19)

PA = NT_ref
correct / NT_ref (20)

F1 = 2
∗

 (21)

In which: 

Ncorrect: number of correct classified points. 

Ntotal: total number of points. 

NT
correct: number of correctly classified points in a given class. 

NT
classified: number of classified points in a given class. 

NT_ref
correct: number of correctly classified in reference data of a given class. 

NT_ref: number of points in reference data in a given class. 
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Additionally, classification maps are validated against statistical data and visually 
examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4. EXPERIMENTS AND RESULTS 

This chapter presents results of the method including compositing results (section 
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4.1), land cover classification results based on point validation (section 4.2), land cover 
classification results based on map validation (section 4.3). Conclusion of advantages 
and disadvantages of the method are discussed at the end of the chapter. 

4.1. Compositing results 

Before composition, the average cloud percentage over 5 target images is 20.54% 
where image at DOY 169 is cloudiest with 73.63% cloud pixels. After compositing, all 
images are at least 99.78% clear (i.e. DOY 265). However, there are remaining cloudy 
pixels without replacement candidates. 2015 data mostly contributes to composition 
with 72.36%, followed by 2013 (22.04%), 2014 (5.55%) and 2016 (0.05%) data. 

NDVI and Bare Soil Index (BSI) temporal profiles of seven land cover classes are 
presented in Figure 15. NDVI and BSI are spectral indices which are calculated from 
Landsat 8 spectral bands. NDVI is an index of plant “greenness”. BSI is sensitive to soil 
content on the ground. Formulas of NDVI and BSI are presented below. 

NIR	 	Red
NIR	 	Red

 
(22)

SWIR	 	Red 	 	 NIR Blue
SWIR	 	Red 	 	 NIR Blue

 
(23)

Where NIR is near infrared band (Band 4), Red is red band (Band 3), SWIR is short-
wave infrared band (Band 6) and Blue is blue band (Band 2). 

From Figure 17, it could be seen that seven classes can be divided into four distinct 
groups: (impervious area, bare land), paddy rice, water, and (tree, crop, grass and shrub). 
Due to cultivation practices, paddy rice’s NDVI and BSI temporal profile varies across 
the year.  

Although pixel candidates are carefully selected by BAP, they are still spectrally 
different from neighbouring pixels of other candidate images. For example, for DOY 
265 in Figure 18b, composite pixels over a rice planting area show different colour 
blocks. Some cloudy pixels are replaced by vegetated observations while others are 
replaced by flooded observations. This indicates selection of appropriate images has 
significant impact on BAP composites for areas with a high temporal dynamic of land-
cover types, especially rice and agricultural areas. Thus, knowledge of local agricultural 
calendar could improve image selection for spectrally-uniform BAP composites. 
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Figure 17. NDVI (above) and BSI (below) temporal profile of land-cover class 

4.2. Assessment of land-cover classification based on point validation 

4.2.1. Yearly single composite classification versus yearly time-series 

composite classification 

Test set validation results are provided in Table 7. It is found that classifications 
using time-series composites outperformed all single-image classifications with 10.03% 
higher OA and 0.13 higher kappa coefficient on average. Single-image classification is 
also unstable as the results ranging from 68.43 – 76.38% for OA, 0.59 – 0.68 for kappa 
coefficient. Three out of five single-image classifications achieved greater than 72% 
OA, except for the DOY 169 and DOY 265, which have higher BAP pixels included, 
with 73.60% and 24.76% OA respectively. 
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Table 7. F1 score, F1 score average, OA and kappa coefficient for 7 land cover classes 
of six classification cases obtained using XGBoost. Best classification cases are 
written in bold. 

 
DOY 
137 

DOY 153
DOY 
169 

DOY 
265 

DOY 
281 

Time 
series 

Crop 0.50 0.39 0.36 0.33 0.40 0.58 

Bare land 0.06 0.26 0.04 0.17 0.14 0.22 

Paddy rice 0.87 0.84 0.81 0.73 0.80 0.91 

Water 0.85 0.86 0.73 0.81 0.83 0.91 

Tree 0.67 0.70 0.66 0.65 0.74 0.80 
Impervious 
area 

0.84 0.87 0.78 0.83 0.86 0.90 

Grass/Shrub 0.36 0.29 0.30 0.27 0.28 0.44 
F1 score 
average 

0.76 0.74 0.69 0.68 0.73 0.82 

OA (%) 76.4 75.7 69.7 68.4 73.6 82.8 
kappa 
coefficient 

0.68 0.68 0.61 0.59 0.66 0.77 

Considering per-class accuracy, classification of vegetation classes are significantly 
improved with time series classification, as those classes have high temporal dynamics 
which are best captured by multiple observations. From the results, rice in green stage 
in DOYs of 137, 153, 265 is most confused with crop and grass/shrub (see Figure 18c). 
In DOY 169, rice fields are flooded, thus resulting in confusion of rice and water. In the 
last image, DOY 281, harvested rice is confused with bare land and impervious area 
(Figure 18c). By integrating all confusing information in time-series classification, rice 
are better separated from other vegetation classes with F1=0.91 (Figure 18d). 

 

Figure 18. (a) Original surface reflectance images, (b) composite images, (c) 
classification maps for each image, and (d) classified map obtained from time-series 

composite images. 
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Although most LC classes are better identified in time-series classification, bare land 
had confusion with impervious area (maximum F1=0.26, the time-series F1=0.22). This 
is attributed to the two classes having spectrally similar and stable reflectance through 
time. Crop and grass/shrub are occasionally misclassified due to similar spectral signals 
and mixed pixels. Water is separable from other classes due to its unique spectral 
properties, but some water bodies are seasonally vegetated, leading to misclassification 
of water and vegetation. Thus, water also benefits from multiple image observations. 

4.2.2. Improvement of ensemble model against single-classifier model 

For ensemble classification, the following single models with their optimized 
parameters are employed: i) XGBoost with n_estimators=1000, max_depth=5, 
min_child_weight=1; ii) LR with C=1; iii) SVM-RBF with C=10, gamma=0.03125; iv) 
SVM-Linear with C=8; v) MLP with activation=tank, hidden layers=1, and hidden 
nodes=40. Classifiers perform on a stack of 35 spectral temporal features and 7 MSDs 
of spectral bands. Majority voting technique is employed for the ensemble model.  

Table 8. OA, kappa coefficient, F1 score average for each single-classifier and 
ensemble model. Best classification cases are written in bold. 

Measure 

Classifier 

XGBoost LR 
SVM-
RBF 

SVM-
Linear 

MLP Ensemble

OA (%) 83.2 82.6 82.9 81.9 83.1 84.0 
kappa 
coefficient 

0.77 0.77 0.78 0.77 0.78 0.79 

F1 score 
average 

0.82 0.82 0.83 0.83 0.83 0.84 

Using an ensemble of supervised classifiers improves the classification (Table 8). It 
is seen that individual models have similar accuracies with SVM-Linear is the lowest at 
81.94% OA and XGBoost is the highest with 83.23% OA. The ensemble model is better 
than all individual models with OA=83.96% and kappa coefficient=0.79. Per-class 
accuracies of the ensemble model filter the best results from all single-classifier models. 
Classifier F1 score performance is presented in Figure 19.  
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Figure 19. F1 score for land-cover class obtained using multiple classifiers. 

XGBoost is not effective at classifying bare land (F1=0.23) and grass/shrub 
(F1=0.4), but this disadvantage is overcome by SVM-RBF and SVM-Linear with F1 of 
0.35, 0.46 for bare land and 0.47, 0.49 for grass/shrub respectively. SVM-RBF and 
SVM-Linear are generally high performing. Paddy rice, impervious area, water and tree 
have similar accuracies between classifiers which could be explained as the classes are 
quite separable in this time-series domain. MLP is overall good compared to other 
classifiers, but it performs poorly on bare land (F1 = 0.27). Ensemble model achieved 
similar accuracies of paddy rice, water, tree and impervious areas as compared to other 
classifiers. However, for crop, grass/shrub and bare land which are easily confused with 
other classes (Figure 19), ensemble model generally achieved better classification 
accuracies than any single-classifier model. By integrating models, individual strengths 
remain, while weaknesses are reduced. Table 9 presents confusion matrix of the 
ensemble model with User Accuracy (UA) and Producer Accuracy (PA) for each class. 

Table 9. Confusion matrix of ensemble model. 

 Crop 
Bare 
land 

Rice Water Tree 
Imper
vious 

Grass/
Shrub 

Reference 
total 

UA 
(%) 

Crop 222 3 25 4 24 22 31 331 66.1 

Bare land 6 22 1 1 0 22 4 56 33.5 

Rice 37 0 581 16 2 3 7 646 91.6 

Water 5 0 11 411 4 11 4 446 90.9 

Tree 26 2 3 2 433 8 17 491 83.2 

Impervious 19 6 4 3 5 485 1 523 93.1 

Grass/Shrub 56 7 12 5 47 11 117 255 38.9 
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Classificatio
n total 

371 40 637 442 515 562 181 2748 
OA 
(%) 

PA (%) 55.1 41.0 92.8 92.0 79.3 90.5 59.8 OA (%) 84.0 
 

4.3. Assessment of land-cover classification results based on map validation 

The LC map of the ensemble model is displayed in Figure 20. It is observed that 
paddy rice and impervious area are the dominant classes.  

 

Figure 20. 2016 Land-cover map for Hanoi based on the most accurate classification 
using time-series composite imagery and the ensemble of five classifiers. 

According to Hanoi Statistic Office, rice area in Hanoi for the spring-summer season 
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is approximately 99,454 ha  [47]. Rice area is computed for the classification maps and 
compared to the official statistic. The ensemble rice map is closest to the official number, 
and slightly overestimates by 4,764 ha (4.79%). Additional classifiers are shown in 
(Table 10). 

Table 10. Error (ha and %) of rice mapped area for different classification scenarios. 

Classificati
on  

DOY 
137 

comp
osite 

DOY 
153 

compos
ite 

DOY 
169 

compos
ite 

DOY 
265 

compos
ite 

DOY 
281 

compos
ite 

Time 
series of 
composi

tes 

Time 
series of 
composit
es with 

optimizat
ion 

Error(ha) 
+8,65

7 
+13,51

0 
+15,67

4
+16,78

5
+8,990 +7,811 +4,764 

Error(%) 8.70 13.58 15.76 16.88 9.04 7.85 4.79 

To summary, the best land-cover map using the ensemble model achieved 83.91% 
OA with kappa coefficient of 0.79. This is in comparison to 72% OA using the 
unmodified compositing algorithm in a slightly larger region and a few additional land 
cover types  [22]. Additional regional land cover mapping studies had generally good 
accuracy with: 89% OA for forest/non-forest cover maps  [21], 90% OA for urban 
landscape with dense time-series stack  [48], 89% OA for land cover map in a less-
cloudy region with automated pre-processing and random forest  [49], 89.42% OA in a 
recent rice/non-rice cover study over Red River Delta with dense Landsat 8 time-series 
stack  [50], and 84% OA in a recent land cover study over Hanoi employing radar to 
overcome clouds  [51].  

Multi-year composition increases cloud-free pixels in composites, especially over 
cloud-persistent areas such as Hanoi, Vietnam. A time-series composites with over 99% 
cloud-free pixels was developed. One disadvantage of this compositing is that it does 
not account for intra-annual vegetation phenology. However, using time-series 
composites still improves classification performance in comparison with any single 
composite classification. This is attributed to the effective representation of seasonal 
temporal dynamics of land-cover types. Among the top supervised classifiers, XGBoost 
performed best for land cover mapping. However, an ensemble model still improved 
classification results by promoting individual strengths and reducing weaknesses. This 
ensemble model is especially effective for confusing classes (bare land, crop, 
grass/shrub) but not already well-separated classes (paddy rice, water). In the future, 
image composition accounting for phenology could improve composite quality and 
classification accuracy for improved mapping of land cover types with high temporal 
dynamics. 
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CHAPTER 5. CONCLUSION 

In this thesis, I have conducted a research on land cover classification using Landsat 
8 satellite images. Specifically, I have presented in this thesis: (i) fundamental concepts 
of remote sensing sciences, (ii) satellite images and its applications in various domains, 
(iii) land cover classification problems. A comprehensive review of land cover 
classification methods has been conducted to address its current developments. LCC is 
a traditional application in remote sensing. Many LCC studies have been conducted in 
different places on Earth. However, LCC using optical satellite images in cloud-prone 
areas with high temporal dynamics of land covers is still challenging due to lack of 
cloud-free data. In this thesis, I have proposed a LCC method for these areas. The result 
of this research is also published in the International Journal of Remote Sensing (Taylor 
& Francis) in a paper entitled “Improvement of land-cover classification over frequently 
cloud-covered areas using Landsat 8 time-series composites and an ensemble of 
supervised classifiers”.   

In this thesis, I have proposed a LCC method for these areas. Firstly, a dense time-
series of composite images was constructed from all available multi-year Landsat 8 
images over the study area. A modified compositing method was proposed for the 
compositing process using Landsat 8 SR images. The result images are almost cloud-
free thus are ready for feature extraction. An ensemble of five experimentally strongest 
supervised classifiers in the experiments was built to classify a stack of composite 
images and additional features (Mean Standard Deviations). The best land-cover map 
achieved 83.91% OA with kappa coefficient of 0.79. Some conclusions could be drawn 
from the research including: (i) multi-year composition increases cloud-free pixels in 
composites, especially over cloud-persistent areas such as Hanoi, Vietnam; (ii) accurate 
land cover maps could be derived from time-series composite images; (iii) ensemble 
learning could slightly improve classification as compared to any single-classifier 
model, however, significant improvements are observed for confusing classes as in 
single model, but not for well-separated classes.  

There are also some remaining problems including: (i) The compositing method 
does not account for intra-annual vegetation phenology thus may not be good enough 
for some land covers like paddy rice; (ii) there are still significant confusions between 
bare land/impervious surface, grass/crops/trees due to their similar spectral 
characteristics, even in temporal domain. Therefore, future researches could be placed 
on improvement of compositing methods for high temporal dynamics land covers. And 
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development of LCC methods for better separating of bare land/impervious surface, 
grass/crops/trees. 
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