
`i

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Hua Viet Ngoc

TEACHING AND LEARNING

SCHEDULER SYSTEM

Major: Computer Science

HA NOI - 2015

http://test.uet.vnu.vn/

`ii

VIETNAM NATIONAL UNIVERSITY, HANOI

UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Hua Viet Ngoc

TEACHING AND LEARNING

SCHEDULER SYSTEM

Major: Computer Science

Supervisor: PhD Truong Anh Hoang

HA NOI - 2015

`iii

AUTHORSHIP

“I hereby declare that the work contained in this thesis is of my own and has not been

previously submitted for a degree or diploma at this or any other higher education

institution. To the best of my knowledge and belief, the thesis contains no materials

previously published or written by another person except where due reference or

acknowledgement is made.”

Signature:………………………………………………

`iv

SUPERVISOR’S APPROVAL

“I hereby approve that the thesis in its current form is ready for committee

examination as a requirement for the Bachelor of Computer Science degree at the

University of Engineering and Technology.”

Signature:………………………………………………

`v

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to PhD Truong Anh Hoang, who helped

me a lot in the process of implementing this thesis.

I would like to also thank some my friends in K56CA - University of Engineering and

Technology and Framgia Company. They also support me to complete my thesis.

I greatly appreciate the following organizations: Information Technology Department,

the University of Engineering and Technology

`vi

ABSTRACT

Currently, the volume of teaching is increasing, the complexity of the process of

assigning teaching schedule so that rational and efficient as well as satisfying many

binding conditions has prompted raises a system can solve the problems mentioned

above. My proposal is to build a friendly system, easy to use for everyone but may

allow custom attributes for building complex an optimal timetable.

My system is divided into 2 parts: the client (front-end) is a website with a friendly

GUI, which allows CRUD data and builds constraints with the timetable; the server

(back-end) will be the data processing center and find an optimal timetable.

In my system, the server use a scheduling system is FET (an open source free

timetabling software), so most of the results of this system depend on the FET. After a

period of testing, I found this system can solve a complex timetable in an acceptable

time even with a university scale.

Overall, this system can solve these problems in practice, however to be able to apply

immediately, it needs to be further improved because there are still some limitations,

as well as to the involvement of multiple parties to conduct tests more systematically.

`vii

TABLE OF CONTENTS

List of Figures ... ix

List of Tables .. x

Abbreviations .. xi

INTRODUCTION ... 1

1.1 Motivation ... 1

1.2 Contributions and thesis overview .. 1

RELATED WORK .. 3

2.1 Some scheduling software .. 3

2.2 FET ... 4

2.2.1 Brief history for FET ... 4

2.2.2 FET Features ... 4

2.2.3 FET Algorithms .. 5

2.2.4 FET's role in this system ... 7

2.3 Ruby on Rails framework ... 7

2.3.1 Ruby language... 8

2.3.2 MVC – Model-View-Controller ... 8

2.3.3 REST – REpresentational State Transfer .. 9

2.3.4 ORM – Object-relational mapping ... 10

2.3.5 Asset pipeline .. 10

2.4 Some other technologies ... 11

OUR SYSTEM ... 12

3.1 Requirements .. 12

3.2 Interactive with FET ... 13

3.3 Use-case diagram .. 14

3.4 Model and Database.. 17

3.5 Controller .. 20

3.6 View .. 21

RESULT ... 26

`viii

 4.1 Results ... 26

 4.2 Comparisons .. 28

CONCLUSIONS .. 29

 5.1 Conclusions ... 29

 5.2 Future works .. 29

REFERENCES .. 30

`ix

List of Figures

Figure 2.1: A typical collaboration of the MVC components 9

Figure 3.1: A detailed diagram of MVC in Rails .. 13

Figure 3.2: Interactive with FET ... 14

Figure 3.3: Use-case diagram (overview) ... 15

Figure 3.4: Activity diagram for import data from external files 16

Figure 3.5: Model design for group User .. 17

Figure 3.6: Model design for group Data .. 18

Figure 3.7: Model design for group Constraint ... 19

Figure 3.8: Listing Lecturers ... 22

Figure 3.9: Listing Room (mobile resolution) ... 22

Figure 3.10: Edit day (mobile resolution) ... 23

Figure 3.11: Edit course (mobile resolution) ... 23

Figure 3.12: Break Times constraint ... 24

Figure 3.13: Non-overlap Courses constraint .. 24

Figure 3.14: Space Courses constraint .. 25

Figure 3.15: Lecturer constraint .. 25

Figure 4.1: Screen for manager home ... 27

Figure 4.2: Screen for timetable .. 27

`x

List of Tables

Table 3.1: RESTful routes provided by the Subjects resource 20

Table 4.1: Time to process of scheduling task .. 26

`xi

ABBREVIATIONS

CRUD Create, read, update and delete

CSV Comma-separated values

FET (name of free timetable software)

GUI Graphics user interface

MVC Model-View-Controller

ORM Object-relational mapping

REST Representational state transfer

ROR Ruby on Rails framework

`1

Chapter 1

INTRODUCTION

1.1 Motivation

Nowadays, teaching activities at the university has become more complex because

many different reasons: the number of classes, courses, lecturers, classrooms, along

with a variety of different binding conditions on time for other work of the lecturers,

bound in the courses of the same class are non-overlap,.... It makes building a

timetable becomes extremely difficult.

Unfortunately, this issue has been resolved manually in many schools and universities.

It cannot thoroughly solve the above-mentioned constraints, as well as the control,

statistics, management becomes difficult. This motivated me to build a system to solve

the problem on, create a better solution now.

In fact, in some places I know, they still do manually, but not encounter too many

obstacles. Simply because of their classrooms so much, so arranging a timetable not

good, still can satisfy the basic conditions. But with more complex constraints, or the

facilities are not redundant, the timetable construction is still very difficult to manually

resolve. Even with the large number of classrooms, there will be many vacant

classrooms in many periods, this is wasteful. If we can control, we can use for other

useful purposes. So it is clear that we need a system that can solve this issue.

1.2 Contributions and thesis overview

The purpose of this thesis is to present how to build a system as described above and

my main contribution was the development of this system. We will present detail in

later

The rest of this thesis is organized to as follows:

`2

Chapter 2 presents some work related to the construction of this system include: using

an open source software for scheduling (FET), Ruby on Rails (ROR) framework and

some knowledge related to website development

Chapter 3 will present full of design, architecture, the how it work of the system.

Chapter 4 and Chapter 5 will be the results and conclusions

`3

Chapter 2

RELATED WORK

2.1 Some scheduling software

Today, scheduling problem is not a new issue. So sure there was a lot of scheduling

software has been developed around the world. Before building the system, we should

find out through some current software:

 UniTime (http://www.unitime.org/)

 FET - Free Timetabling Software (http://lalescu.ro/liviu/fet/)

 Mimosa Scheduling Software (http://www.mimosasoftware.com/)

 Lantiv Scheduling Studio 7 (http://schedulingstudio.com/)

Above is some current scheduling software, however, Mimosa Scheduling Software

and Lantiv Scheduling Studio 7 software are not free software, as they are inclined to

create and manage manually rather than with the automatic scheduling with

conditions. UniTime and FET are open source software, automatic scheduling with

constraints. In addition, there also are many other similar software only are most of

them are offline and commercial software. Through the process of research, I think

that they still do not really resemble my system. I am building a system with user-

friendly interface, easy to use; work through the internet environment (although the

schedule may belong to some individuals, but constraints can come from many sides,

as well as other information should be shared). So I decided to build a new system.

However I noticed FET was designed for the purpose to expand, FET can solve pretty

good core issue. FET is also open source software, so I decided to use the FET as part

of the system.

http://www.unitime.org/
http://schedulingstudio.com/

`4

2.2 FET

In this system, one of the most important pieces is the task scheduling. This is a

difficult task. I decided do not build from scratch. And right there is a lot of software

has solved this problem, but I am particularly attentive to FET.

FET is open source free software for automatically scheduling the timetable of a

school, high-school or university. It uses a fast and efficient timetabling algorithm. It is

licensed under the GNU Affero General Public License version 3 or later. [1]

Usually, FET is able to solve a complicated timetable in maximum 5-20 minutes. For

simpler timetables, it may take a shorter time, under 5 minutes (in some cases, a matter

of seconds). For extremely difficult timetables, it may take a longer time, a matter of

hours. [1]

2.2.1 Brief history for FET

 On 31 October 2002 - Liviu Lalescu started the project. The algorithm was

genetic, very inefficient.

 On 19 March 2006 - Volker Dirr joined the project. He reported that his

difficult data file could not be solved by FET, but could be solved by other

software, and insisted to continue the search for a better algorithm for FET.

 On 24 June 2007 - The current efficient heuristic FET-5 algorithm was found -

marked a leap in the effectiveness of the algorithm

 FET is still being developed and supported until today

2.2.2 FET Features

 FET is written in C ++, so it can ensure the performance, rapid implementation

of complex algorithms, build on the Qt framework, install and compile via

Cmake. Platform independent implementation, allowing running on

GNU/Linux, Windows, Mac and any system that Qt supports.

 Flexible modular XML format for the input file, allowing editing with an XML

editor or by hand (besides FET interface)

 The resulted timetables are exported into XML formats

 Each constraint has a weight percentage, from 0.0% to 100.0% (but some

special constraints are allowed to have only 100% weight percentage)

`5

 A large and flexible palette of time constraints:

o Break periods

o For teacher(s):

 Not available periods

 Max/min days per week

 Max hours daily/continuously

o For students (sets):

 Not available periods

 Max days per week

 Max hours daily/continuously

 Min hours daily

o For an activity or a set of activities/sub-activities:

 A set of preferred starting times

 Min/max days between them

 Consecutive, ordered, grouped (for 2 or 3 (sub)activities)

 Not overlapping

 A large and flexible palette of space constraints:

o Room not available periods

o For teacher(s):

 Home room(s)

o For students (sets):

 Home room(s)

o Preferred room(s):

 For a subject

 For an activity tag

 In addition, FET can solve some other constraints, but I think that no actually

need should not put in here

2.2.3 FET Algorithms [1]

FET uses algorithms developed through several stages as well as uses some other

software too, so it is very complex. So I just summarize the main idea of the algorithm

through references

FET uses a heuristic algorithm, placing the activities in turn, starting with the most

difficult ones. If it cannot find a solution, the algorithm swaps activities recursively if

`6

that is possible in order to make space for a new activity or, in extreme cases,

backtracks and switches order of evaluation.

The algorithm is heuristic (Lalescu named it "recursive swapping").

Input: a set of activities A_1...A_n and the constraints.

Output: a set of times TA_1...TA_n (the time slot of each activity. Rooms are excluded

here, for simplicity. We solve with time and rooms similarly, and then combine them

into final result). The algorithm must put each activity at a time slot, respecting

constraints. Each TA_i is between 0 (T_1) and max_time_slots-1 (T_m).

Constraints:

C1) Basic: a list of pairs of activities which cannot be simultaneous (for instance, A_1

and A_2, because they have the same teacher or the same students);

C2) Lots of other constraints (excluded here, for simplicity).

The timetabling algorithm ("recursive swapping"), though it might be related to the

algorithm known as "ejection chain"):

 1) Sort activities, most difficult first. Not critical step, but speeds up the

algorithm maybe 10 times or more. (It means we choose activities have most

constraints – or least selections)

 2) Try to place each activity (A_i) in an allowed time slot, following the above

order, one at a time. Search for an available slot (T_j) for A_i, in which this

activity can be placed respecting the constraints. If more slots are available,

choose a random one. If none is available, do recursive swapping:

o 2a) For each time slot T_j, consider what happens if you put A_i into

T_j. There will be a list of other activities which don't agree with this

move (for instance, activity A_k is on the same slot T_j and has the same

teacher or same students as A_i). Keep a list of conflicting activities for

each time slot T_j.

o 2b) Choose a slot (T_j) with lowest number of conflicting activities. Say

the list of activities in this slot contains 3 activities: A_p, A_q, A_r.

`7

o 2c) Place A_i at T_j and make A_p, A_q, A_r unallocated.

o 2d) Recursively try to place A_p, A_q, A_r (if the level of recursion is

not too large, say 14, and if the total number of recursive calls counted

since step (2) on A_i began is not too large, say 2*n), as in step (2).

o 2e) If successfully placed A_p, A_q, A_r, return with success, otherwise

try other time slots (go to step (2 b) and choose the next best time slot).

o 2f) If all (or a reasonable number of) time slots were tried

unsuccessfully, return without success.

o 2g) If we are at level 0, and we had no success in placing A_i, place it

like in steps (2 b) and (2 c), but without recursion. We have now 3 - 1 =

2 more activities to place. Go to step (2) (some methods to avoid cycling

are used here).

2.2.4 FET's role in this system

As described above, FET can solve partial workload in this system but not all. FET is

not easy for everyone, not entirely consistent with the teaching at university (I find it

suitable for high school schedules). So we need to change, rebuild several

mechanisms. And even when using FET, the workload must perform for building

systems remains big.

2.3 Ruby on Rails framework (ROR)

This system is actually a website, so I need to choose a framework to build. There are

many frameworks (on many languages: PHP, Python, Ruby, Java....) to choose from

but I chose ROR (Ruby languages) because some advantages:

 ROR is an open-source web framework that‟s optimized for programmer

happiness and sustainable productivity. It lets you write beautiful code by

favoring convention over configuration. [2]

 ROR can build a website quickly because it was staged for basic tasks.

 ROR is designed with many advantages

o Ruby language:

 Object-oriented programming

`8

 Functional programming

 Meta-programming

o Rails framework:

 MVC

 REST

 ORM

o Having asset pipeline

o There are many good security mechanism

Although the system design can be completely independent of the tools for building it

but my thesis is not only the design that presents the process of building up, so

selection of platform or other technologies is very important.

Using framework, designs, patterns or techniques will reduce a lot of effort while

ensuring the necessary requirements. I am pleased to present several characteristics of

the rails.

2.3.1 Ruby language

Ruby is a dynamic, open source programming language with a focus on simplicity and

productivity. It has an elegant syntax that is natural to read and easy to write.

Rails were built on the Ruby programming language. This is a modern language with

syntax style is quite natural and understandable. There is a great community support

and development lib (called gem).

Ruby is full of functions necessary for the development of an application: Object-

oriented programming, Functional programming, Meta-programming...

2.3.2 MVC – Model-View-Controller

Model–view–controller (MVC) is a software architectural pattern for implementing

user interfaces. It divides a given software application into three interconnected parts,

so as to separate internal representations of information from the ways that information

is presented to or accepted from the user. [4]

`9

 The Controller is what connects the views to the model. A controller can send

commands to CRUD the model. It can also send commands to its associated

view to change the view's presentation of the model.

 The Model is where you should keep your data model, the algorithms.

 The View requests information from the model that it uses to generate an output

representation to the user. View visualize the data (the UI)

Figure 2.1: A typical collaboration of the MVC components [4]

MVC is widely used in website development. The clear dividing functions, tasks and

methods of interact as above figures makes the architecture of the website coherently,

clear, easy to control and manage.

2.3.3 REST – REpresentational State Transfer

REST is an architectural style for developing distributed, networked systems and

software applications such as the World Wide Web and web applications. Although

REST theory is rather abstract, in the context of Rails applications REST means that

most application components are modeled as resources that can be created, read,

updated, and deleted - operations that correspond both to the CRUD operations of

relational databases and to the four fundamental HTTP request methods: POST, GET,

PATCH, and DELETE.

As a Rails application developer, the RESTful style of development helps you make

choices about which controllers and actions to write: you simply structure the

application using resources that get created, read, updated, and deleted.

`10

2.3.4 ORM – Object-relational mapping

Object-relational mapping, commonly referred to as its abbreviation ORM, is a

technique that connects the rich objects of an application to tables in a relational

database management system. Using ORM, the properties and relationships of the

objects in an application can be easily stored and retrieved from a database without

writing SQL statements directly and with less overall database access code.

In Rails, there is an implementation of the Active Record pattern which itself is a

description of an Object Relational Mapping system. Active Record gives us several

mechanisms, the most important being the ability to:

 Represent models and their data.

 Represent associations between these models.

 Represent inheritance hierarchies through related models.

 Validate models before they get persisted to the database.

 Perform database operations in an object-oriented fashion.

2.3.5 Asset pipeline

In Rails, there are three principal features to understand: asset directories, manifest

files, and preprocessor engines:

 Asset directories: there are three canonical directories for static assets, each

with its own purpose:

o app/assets: assets specific to the present application

o lib/assets: assets for libraries written by our development team

o vendor/assets: assets from third-party vendors

 Manifest files: This is a mechanism of Rails can combine all javascript files into

one, all css into one, increasing efficiency when loading a web page

 Preprocessor engines: This is a Rails mechanism to help process a file in a

series engine. For example: file „foobar.js.erb.coffee‟ gets run through both

CoffeeScript (a language same javascript) and ERb (embedded ruby) (with the

code running from right to left, i.e., CoffeeScript first).

`11

With asset pipeline, the results are optimized to be efficient in a production application

but we can work with multiple nicely formatted files in development. The result is the

best of both worlds: convenience in development and efficiency in production.

2.4 Some other technologies

Outside of FET and ROR, I have studied and used some of technologies, techniques

and protocols later (because they are also quite popular today, so I just mentioned, but

will not say much about it):

 HTTP protocol: is an application protocol for distributed, collaborative,

hypermedia information systems. HTTP is used popularly in World Wide Web

 HTML: is a revision of the Hypertext Markup Language, the standard

programming language for describing the contents and appearance of Web

pages.

 CSS: (Cascading Style Sheet) is a plain text file format used for formatting

content on web pages.

 JavaScript: is an interpreted programming or script language (often used in the

client side to manipulate with DOM - Document Object Model)

 Git: is a distributed revision control system with an emphasis on speed, data

integrity, and support for distributed, non-linear workflows.

 Heroku: a cloud application platform that deploy web apps.

`12

Chapter 3

OUR SYSTEM

3.1 Requirements

The system should be developed to ensure the following requirements:

About user and authorities:

 There are 2 user types: Manager and Lecturer

 Lecturer:

o Can edit/update profile

o Can see useful data (lecturers, subjects, courses, timetable ...)

o Can add, edit, remove personal constraints (busy time, max periods

continuous/daily, ...)

 Manager:

o Can edit/update profile

o Can add, remove Lecturer model

o Can CRUD other data (time (periods), space (rooms), subjects, courses,

...)

o Can create constraints (break times, unavailable rooms in some periods,

non-overlap courses ...)

o Can control generating timetable

About GUI:

 Friendly, easy to use

 Intuitive, good interaction

 Responsive web (good view in mobile)

About functions:

 Manipulation of data to work correctly, ensure data integrity when changes

`13

 Data can import from external file (CSV, Excel ...). This makes moving data

from another place to the system conveniently

 Solving timetable has to be an acceptable time (or find a good solution in a

determined interval). The configuration can adjustment flexibility in the process

generating timetable

 Can search, change data easily

3.2 Interactive with FET

We will start building the basic architecture for the system starting from the processing

of requests from users, and how to communicate with FET:

Figure 3.1: A detailed diagram of MVC in Rails. [3]

The above figure is the basic process of processing the request is sent from the client

according to the MVC pattern. To communicate with the FET, we will build a

Controller to create FET input (XML format) from data in the model. Then we active

FET (C++ program) via command line to generate timetable. FET output is also XML

`14

files. We will parse output XML files to transform into the model, make a complete

timetable. The figure below describe more clearly:

Figure 3.2: Interactive with FET

Also, when working with the FET, this requested requires time. So we should use

multithreading techniques to other requests still work when FET is running.

3.3 Use-case diagram

First, let's consider the overall design for use-case diagrams generally.

We has 2 types of user: lecturer and manager, both 2 and inherited from the user, the

user has manipulate the basic login / logout and to use sessions and cookies to

remember user (we should care to security issues, Rails has available security

mechanisms pretty good against common hacking type, including passwords or tokens

remember are hashed before writing to the database, data encryption values in cookie,

use SSH,). Let see more clearly illustrated in below:

Controller

FET

Input (XML format)

Output (XML format)

Manager

(1) Send a request to

generate timetable

(2) Get data to

create input for FET

Model Database
ORM

(3) Create

(4) Active via

command line (5) Solve by FET

(5) Solve by FET

(6) Parse XML file

to transform into

model

(7) Save timetable

information

`15

Figure 3.3: Use-case diagram (overview)

In Lecturer role, there are two main activities: view data (Data in this system include

Lecturers, Subjects, Courses and several other data that will present later) and

customization personal constraints (busy-time, max periods daily/continuous). In the

function “view data”, we need to build for convenience, to the appropriate view for

each different model types (e.g. display timetable, rooms) and has other useful

functions for searching and paging. Personal constraints lecturer in our system

currently only include busy-time (for periods) and max continuous periods / daily.

These constraints are necessary for realistic and can solve by FET. Actually FET has

more constraints, but for simplicity, we have retained the necessary constraints to

create the system, if over time, the binding is becoming increasingly more complex,

we will continue to design accordingly, or try to convert them into the basic

constraints.

`16

In the manager role, there are four main actions: the right to work with all the data,

input from external files (used for transferring data from other place quickly and

conveniently), set the necessary constraints (break-time, unavailable space, non-

overlap courses, courses space), controls the timetable creation with FET. Similar as

with lecturer constrains, FET have more constrains but for simplicity, we have omitted

and only keep what is important. We would like to explain briefly about the type of

constraints. Break-time: this is the periods without teaching activities (break - E.g.

periods in Sunday), we will not arrange courses happening at these periods.

Unavailable space: not all rooms can be used in all the time, so we need to make

constraints some classrooms that will not be used in specific periods. Non-overlap

courses: because each class can study many subjects in one semester, to ensure these

courses are not overlap is extremely necessary. Space courses: Some courses may

happen in some particular room (e.g. laboratory).

Here, the complex activities mainly happening in the manager role. CRUD data have

to ensure data integrity and data validation when changing (we will talk in more detail

in the next section). Set constraints and how to communicate with FET mentioned

above, we are pleased to talk about processing the import data from external file.

Figure 3.4: Activity diagram for import data from external files

`17

Rails supports for uploading file through the HTML, the process of excel or csv file

format is also supported, so just follow the above process, we can solve well this

action.

3.4 Model and database

Model in this system divides into 3 main groups: User, Data, and Constraints. First let

us consider group User.

Figure 3.5: Model design for group User

A basic model in Rails is a class inherits from ActiveRecord::Base class, this class will

make our class as a model in MVC (communicating with the database, validate the

data before saving, associate with other models to ensure data integrity...). One

important thing: in ROR, all class is stored in database which always exist column id

(primary key and auto-increment) and 2 other columns created_at and updated_at.

The addition an id to ensure uniqueness of the object and the integrity data (we only

refer to another object via its id).

In the above figure, each rectangle corresponds to a class, the upper part of the

rectangle are the attributes (attributes will be created in the database respectively by

Rails - ORM). The bottom part is the list of operations.

`18

Class user with basic attributes: username, password_digest (password will be hashed

before they are written to the database - a security feature when information database

is leaked, they cannot know the real password), remember_digest: similar

password_digest, it save hash value of a token that is generated randomly and stored in

cookies - remember login function). The operations: remember, forget and

authenticate? used to authenticate when login, remember login and logout. There are 3

static methods: User.digest: compute the hash value of a string. User.new_token:

generate a random string (token stored in cookies to remember login) and User.search

(returns an array of objects user for searching).

Similarly, Lecturer and Manager also have some basic attributes and search functions,

however Lecturer and Manager inherit from User. As we know, in a relational

database management system, there is no concept for inheriting object directly, so we

must find ways to save the inherited objects in the database. We will add the User

class 2 attributes: user_id, and user_type, then associate Lecturer and Manager with

the User class, Rails know how to solve the problem as a class are inherited

themselves.

In the above models also contains the necessary data validation (e.g. username only

contain alphanumeric, password length at least 6 characters, format email...). Rails

have quite simple mechanism to solve data validation.

Figure 3.6: Model design for group Data

Group data design is simple (just include most important things). It includes space

(Building and Room), time (Day and Period, by default, we have 7 days a week and 10

`19

periods per day). Subject is presented in the above figure. Note: this design for

university which uses credit system, Course information includes subject, lecturer and

several other attributes. Especially I would say more about the duration and active

attributes. Duration is number of continuous periods in a course per week. By default,

the course will cover number of continuous periods same number of credits subject.

But in many situations, that is not right (e.g. a 4-credits courses will be divided into 2

sessions per week, each session occupy 2 continuous periods. So information stored in

the database corresponding is “2-2” or “2_2”). If accordance with design database

standards, the value stored in the database must be pure, however our system is

designed that way for simplicity. And active attribute, it set a course that has been

arranged in the timetable or not.

Basically, the data in reality may actually be more complex, however, the current

system is only designed as above.

Next go along to the group constraints:

Figure 3.7: Model design for group Constraint

`20

All constraints in the system are described above. We have two basic constraints with

BreakTime (several periods will not take place for teaching activities, such as the

periods on Saturday or Sunday), and UnavailableSpace (a certain rooms cannot use in

some periods). NonOverlapCourse: a set of courses not take place simultaneously (e.g.

the courses of same class). SpaceCourse: Some courses will take place in several

certain rooms. LecturerConstraint: Each lecturer has personal constraint with different

busy-time.

In above design, we add several extra classes for resolving many-to-many

relationships between models. Although we do not really need to add these classes

(just add in the database), but Rails using ORM, mapping each model (corresponding

to a class) corresponding to a table in the database. This enables the CRUD models

simpler. In addition, there is some relationship with the model in the group Data to

ensure data integrity.

We do not need to worry too much into a database management system (DBMS). Rails

using ORM, and so we can design database independent with an DBMS, we can use

MySQL, Postgresql... or any other DBMS, even a DBMS does not support foreign

keys. The association and data integrity can be defined at the logical level in the Rails

model.

3.5 Controller

For each model, they are a resource in Rails, which means they have all the CRUD

operations. The operations will be processed in the Controller. Let's take an example

with the Subjects resource.

Firstly, let see MVC architecture in Rails again, we will start from routings. Following

table represents the implementation of the REST architecture in Rails:

HTTP request URL Action Purpose

GET /subjects/ index page to list all subjects

GET /subjects/1 show page to show subject with id 1

GET /subjects/new new page to make a new subject

POST /subjects/ create create a new subject

GET /subjects/1/edit edit page to edit subject with id 1

PATCH /subjects/1 update update subject with id 1

DELETE /subjects/1 destroy delete user with id 1

Table 3.1: RESTful routes provided by the Subjects resource

`21

One should note that most current browsers only support 2 methods for form of http:

GET and POST. REST in Rails also uses some other methods. However, we do not

worry because Rails automatically added to the hidden input in the form to set really

method when html code is created by Rails.

We will have a subjects_controller that have 7 functions corresponding to 7 above

routes Each function will work with Subject model and call to the corresponding view

to create UI (HTML).

For each controller, we can control authority for each action. For example, when there

is a request to delete a subject, we can check whether the current user is the manager.

In Rails, this is quite simply, before implement the action delete in the

subjects_controller, we will declare with Rails that will run via another function to

check current user.

From the controller, we can call the Model, the Relation, and Association of Model.

For example, if we want to get all Course, we simply call Course.all. Each Course

have a Subject, we also simply called course.subject. The data association and

working with the database is supported by Rails.

In addition to the standard operations with the model, we also completely free of

routing problems, handles the other functions, free to define other functions in the

controller. Example to handle an AJAX request, we can define a function in controller

handling a defined route for this request. Rails support to generate JavaScript code

with Preprocessor engine (embedded ruby), and automatically sent to the client and

execute this code to simplify some common AJAX request without writing a specific

JavaScript code to process the user side.

We also can handle more complex tasks (e.g. interaction with FET) through the

controller by external modules and they will be included such as an apart in controller.

We should not write directly to the controller, which helps controllers be true to the

meaning of it, not break the features of MVC architecture.

3.6 View

With each Model manipulation, we have a distinct View. The design view is not

simple. To have a beautiful design, simple, display well on different types of screens

(mobile, PC ...) requires us to build a good system CSS. Here I have used the bootstrap

(is a free and open-source collection of tools for creating in websites and web

applications) and SCSS (an expanded version of CSS to work more convenient).

`22

Figure 3.8: Listing Lecturers

Above figure describes all objects of a model (here is Lecturer). It correspond index in

controller. Here I also have built search and paging features here. Most listing all

objects of a Model is shown above. However, there are also some other models have a

different View.

Figure 3.9: Listing Room (mobile resolution)

`23

The above figure described space (buildings and rooms). It describes the friendly and

intuitive. Rooms also arranged by their floor (I detect floor by regex).

Figure 3.10: Edit day (mobile resolution)

The figure above described edit an object (here is Day). I have used a bit of technique

with JavaScript to add / remove elements without reloading.

Figure 3.11: Edit course (mobile resolution)

`24

The above figure describes edit a different model (Course). I use selection (combobox,

dropdown...) is supported by HTML for association data (Course reference Subject

and Lecturer)

Figure 3.12: Break Times constraint

The figure above describes break-times (there will be no teaching activities take place

on these periods). Change by clicking directly into the cell (AJAX).

Figure 3.13: Non-overlap Courses constraint

`25

Figure 3.14: Space Courses constraint

Figure 3.15: Lecturer constraint

Figure 3.13, 3.14, and 3.15 describe View of the several constraints (Non-overlap

Constraint - A set of course not take place simultaneously; Space Courses - A course

has a set of preferred Room; Lecturer constraint - The conditions teaching of lecturer,

busy-time...)

`26

Chapter 4

RESULTS

4.1 Results

The system has just been implemented about 80%, but it has made the core

functionality (scheduling). The interface is quite simple but not really convenient,

display well on mobile.

Results for scheduling functions depend on FET, no customization and improvement,

making the design model is still not close to reality.

The following table shows the result of the ability to perform scheduling task.

Lecturers Courses Rooms Time-slots Time to process

30 150 15 50 < 1 minute

40 200 20 50 < 1 minute

50 250 25 50 < 1 minute

100 600 50 65 < 5 minute

Table 4.1: Time to process of scheduling task

The data in this test is random as well as its constraints is not complicated so almost no

take a long time in the process of scheduling. The system need to test more and use

data sets in practice to get the most accurate results.

`27

Figure 4.1: Screen for manager home

Figure 4.2: Screen for timetable

Figure 4.1 is manager home. There are a few useful statistical parameters and control

to generate a Timetable. Figure 4.2 is describe a timetable, we can search timetable for

a subject, a course, a lecturer or a room.

`28

4.2 Comparisons

If compared with some current software, the system obviously lacking in both

functionality and user interface. However, this system has several advantages such as:

environmental activities through internet, which means it can run on many devices, the

installation will also become easier for users, even not even need to install anything.

Scalability and great development, scheduling function is built on an independent

system effectively handle this task. In addition, the environment internet will connect

multiple parties. Creating schedules are subject to a few individuals but the data can

come from many sides, as well as the sharing of data between the parties together.

`29

Chapter 5

CONCLUSIONS

5.1 Conclusions

Generally, the current scheduling problem is not new. There are a lot of software on

the market solve this. However the development of a system as a web service is

necessary.

My system was first step built, but there are many shortcomings, but it shows the

feasibility of putting into practice deployment.

Through this thesis, I had to learn a lot of things and also have built part of the system.

Include MVC architecture, work with the ROR framework, external system (FET) and

a lot of other technologies as well as programming techniques.

Although much remains to be done but initial results show that the ability to develop

the system is available. Below section is some of the future wok will need to continue

research, innovation and deployment.

5.2 Future works

 Continue to implement the missing functionality

 Learn more about FET and improve its algorithms

 Design more detail about models and constraints

 Redesigned user interface appropriate and more convenient

 Support for more languages (Vietnamese...)

 Build more function: create timetable for final examination

 Build timetable with date time in practice (it means we have a timetable attach

with the calendar, and can adjust some specific periods on specific date)

`30

REFERENCES

[1] FET Free Timetabling Software [Online] http://lalescu.ro/liviu/fet/

[2] Ruby On Rails framework [Online] http://rubyonrails.org/

[3] Rails tutorial [Online] https://www.railstutorial.org/book

[4] MVC [Online]

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

http://lalescu.ro/liviu/fet/
http://rubyonrails.org/
https://www.railstutorial.org/book
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

