

VIETNAM NATIONAL UNIVERSITY, HANOI
UNIVERSITY OF ENGINEERING AND TECHNOLOGY

LÊ HỒNG ANH

METHODS FOR MODELING AND
VERIFYING EVENT-DRIVEN SYSTEMS

DOTORAL THESIS IN INFORMATION TECHNOLOGY

Hà Nội – 2015

VIETNAM NATIONAL UNIVERSITY, HANOI
UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Lê Hồng Anh

METHODS FOR MODELING AND VERIFYING EVENT-DRIVEN
SYSTEMS

 Major: Software Engineering
 Mã số: 62.48.01.03

DOCTORAL THESIS IN INFORMATION TECHNOLOGY

 SUPERVISORS:
 1. Assoc. Prof. Dr. Trương Ninh Thuận
 2. Assoc. Prof. Dr. Phạm Bảo Sơn

Hà Nội – 2015

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

Lê Hồng Anh

PHƯƠNG PHÁP MÔ HÌNH HÓA VÀ KIỂM CHỨNG CÁC HỆ
THỐNG HƯỚNG SỰ KIỆN

 Chuyên ngành: Kỹ thuật phần mềm
 Mã số: 62.48.01.03

LUẬN ÁN TIẾN SĨ NGÀNH CÔNG NGHỆ THÔNG TIN

 NGƯỜI HƯỚNG DẪN KHOA HỌC:
 1. PGS. TS. Trương Ninh Thuận
 2. PGS. TS. Phạm Bảo Sơn

Hà Nội – 2015

Declaration of Authorship

I declare that this thesis titled, ‘Methods for modeling and verifying event-driven systems’

and the work presented in it are my own. I confirm that:

� I have acknowledged all main sources of help. Where I have quoted from the work of

others, the source is always given. With the exception of such quotations, this thesis is

entirely my own work.

� Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself.

� This work was done wholly while in studying for a PhD degree

Signed:

Date:

i

VIETNAM NATIONAL UNIVERSITY, HANOI
UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Lê Hồng Anh

METHODS FOR MODELING AND VERIFYING EVENT-DRIVEN
SYSTEMS

 Major: Software Engineering
 Mã số: 62.48.01.03

DOCTORAL THESIS IN INFORMATION TECHNOLOGY

 SUPERVISORS:
 1. Assoc. Prof. Dr. Trương Ninh Thuận
 2. Assoc. Prof. Dr. Phạm Bảo Sơn

Hà Nội – 2015

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

Lê Hồng Anh

PHƯƠNG PHÁP MÔ HÌNH HÓA VÀ KIỂM CHỨNG CÁC HỆ
THỐNG HƯỚNG SỰ KIỆN

 Chuyên ngành: Kỹ thuật phần mềm
 Mã số: 62.48.01.03

LUẬN ÁN TIẾN SĨ NGÀNH CÔNG NGHỆ THÔNG TIN

 NGƯỜI HƯỚNG DẪN KHOA HỌC:
 1. PGS. TS. Trương Ninh Thuận
 2. PGS. TS. Phạm Bảo Sơn

Hà Nội – 2015

VIETNAM NATIONAL UNIVERSITY, HANOI
UNIVERSITY OF ENGINEERING AND TECHNOLOGY

Lê Hồng Anh

METHODS FOR MODELING AND VERIFYING EVENT-DRIVEN
SYSTEMS

 Major: Software Engineering
 Mã số: 62.48.01.03

DOCTORAL THESIS IN INFORMATION TECHNOLOGY

 SUPERVISORS:
 1. Assoc. Prof. Dr. Trương Ninh Thuận
 2. Assoc. Prof. Dr. Phạm Bảo Sơn

Hà Nội – 2015

ĐẠI HỌC QUỐC GIA HÀ NỘI
TRƯỜNG ĐẠI HỌC CÔNG NGHỆ

Lê Hồng Anh

PHƯƠNG PHÁP MÔ HÌNH HÓA VÀ KIỂM CHỨNG CÁC HỆ
THỐNG HƯỚNG SỰ KIỆN

 Chuyên ngành: Kỹ thuật phần mềm
 Mã số: 62.48.01.03

LUẬN ÁN TIẾN SĨ NGÀNH CÔNG NGHỆ THÔNG TIN

 NGƯỜI HƯỚNG DẪN KHOA HỌC:
 1. PGS. TS. Trương Ninh Thuận
 2. PGS. TS. Phạm Bảo Sơn

Hà Nội – 2015

Abstract

Modeling and verification plays an important role in software engineering because it improves

the reliability of software systems. Software development technologies introduce a variety of

methods or architectural styles. Each system based on a different architecture is often pro-

posed with different suitable approaches to verify its correctness. Among these architectures,

the field of event-driven architecture is broad in both academia and industry resulting the

amount of work on modeling and verification of event-driven systems.

The goals of this thesis are to propose effective methods for modeling and verification of

event-driven systems that react to emitted events using Event-Condition-Action (ECA) rules

and Fuzzy If-Then rules. This thesis considers the particular characteristics and the special

issues attaching with specific types such as database and context-aware systems, then uses

Event-B and its supporting tools to analyze these systems.

First, we introduce a new method to formalize a database system including triggers by propos-

ing a set of rules for translating database elements to Event-B constructs. After the modeling,

we can formally check the data constraint preservation property and detect the infinite loops

of the system.

Second, the thesis proposes a method which employs Event-B refinement for incrementally

modeling and verifying context-aware systems which also use ECA rules to adapt the context

situation changes. Context constraints preservation are proved automatically with the Rodin

tool.

Third, the thesis works further on modeling event-driven systems whose behavior is specified

by Fuzzy If-Then rules. We present a refinement-based approach to modeling both discrete

and timed systems described with imprecise requirements.

Finally, we make use of Event-B refinement and existing reasoning methods to verify both

safety and eventuality properties of imprecise systems requirements.

Acknowledgements

First of all, I would like to express my sincere gratitude to my first supervisor Assoc. Prof.

Dr. Truong Ninh Thuan and my second supervisor Assoc. Prof. Pham Bao Son for their

support and guidance. They not only teach me how to conduct research work but also show

me how to find passion on science.

Besides my supervisors, I also would like to thank Assoc. Prof. Dr. Nguyen Viet Ha and

lecturers at Software Engineering department for their valuable comments about my research

work in each seminar.

I would like to thank Professor Shin Nakajima for his support and guidance during my intern-

ship research at National Institute of Informatics, Japan.

My sincere thanks also goes to Hanoi University of Mining and Geology and my colleges there

for their support during my PhD study.

Last but not least, I would like to thank my family: my parents, my wife, my children for

their unconditional support in every aspect. I would not complete the thesis without their

encouragement.

. . .

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Abbreviations viii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 6
1.3 Literature review . 7
1.4 Contributions . 10
1.5 Thesis structure . 11

2 Backgrounds 13
2.1 Temporal logic . 13
2.2 Classical set theory . 15
2.3 Fuzzy sets and Fuzzy If-Then rules . 17

2.3.1 Fuzzy sets . 17
2.3.2 Fuzzy If-Then rules . 18

2.4 Formal methods . 19
2.4.1 VDM . 21
2.4.2 Z . 23
2.4.3 B method . 24

2.5 Event-B . 27
2.5.1 An overview . 27

iv

Contents v

2.5.2 Event-B context . 28
2.5.3 Event-B Machine . 29
2.5.4 Event-B mathematical language 31
2.5.5 Refinement . 32
2.5.6 Proof obligations . 33

2.6 Rodin tool . 36
2.7 Event-driven systems . 37

2.7.1 Event-driven architecture . 37
2.7.2 Database systems and database triggers 38
2.7.3 Context-aware systems . 40

2.8 Chapter conclusions . 42

3 Modeling and verifying database trigger systems 44
3.1 Introduction . 44
3.2 Related work . 47
3.3 Modeling and verifying database triggers system 48

3.3.1 Modeling database systems . 49
3.3.2 Formalizing triggers . 50
3.3.3 Verifying system properties . 53

3.4 A case study: Human resources management application 54
3.4.1 Scenario description . 54
3.4.2 Scenario modeling . 55
3.4.3 Checking properties . 57

3.5 Support tool: Trigger2B . 59
3.5.1 Architecture . 59
3.5.2 Implementation . 60

3.6 Chapter conclusions . 62

4 Modeling and verifying context-aware systems 64
4.1 Introduction . 64
4.2 Related work . 66
4.3 Formalizing context awareness . 67

4.3.1 Set representation of context awareness 68
4.3.2 Modeling context-aware system 69
4.3.3 Incremental modeling using refinement 71

4.4 A case study: Adaptive Cruise Control system 72
4.4.1 Initial description . 73
4.4.2 Modeling ACC system . 73
4.4.3 Refinement: Adding weather and road sensors 75
4.4.4 Verifying the system’s properties 78

4.5 Chapter conclusions . 78

5 Modeling and verifying imprecise system requirements 81
5.1 Introduction . 81
5.2 Related work . 83

Contents vi

5.3 Modeling fuzzy requirements . 85
5.3.1 Representation of fuzzy terms in classical sets 85
5.3.2 Modeling discrete states . 87
5.3.3 Modeling continuous behavior 88

5.4 Verifying safety and eventuality properties 91
5.4.1 Convergence in Event-B . 91
5.4.2 Safety and eventuality analysis in Event-B 92
5.4.3 Verifying safety properties . 93
5.4.4 Verifying eventuality properties 94

5.5 A case study: Container Crane Control 98
5.5.1 Scenario description . 98
5.5.2 Modeling the Crane Container Control system 100

5.5.2.1 Modeling discrete behavior 100
5.5.2.2 First Refinement: Modeling continuous behavior . . . 102
5.5.2.3 Second Refinement: Modeling eventuality property . . 104

5.5.3 Checking properties . 106
5.6 Chapter conclusions . 108

6 Conclusions 109
6.1 Achievements . 109
6.2 Limitations . 113
6.3 Future work . 114

List of Publications 116

Bibliography 117

A Event-B specification of Trigger example 128
A.1 Context specification of Trigger example 128
A.2 Machine specification of Trigger example 129

B Event-B specification of the ACC system 132
B.1 Context specification of ACC system 132
B.2 Machine specification of ACC system 133
B.3 Extended context . 134
B.4 Refined machine . 134

C Event-B specifications and proof obligations of Crane Controller Ex-
ample 136
C.1 Context specification of Crane Controller system 136
C.2 Extended context . 137
C.3 Machine specification of Crane Controller system 138
C.4 Refined machine . 140
C.5 Proof obligations for checking the safety property 143

Contents vii

C.6 Proof obligations for checking convergence properties 144

List of Abbreviations

DDL Data Dafinition Language

DML Data Manipulation Language

PO Proof Obligation

LTL Linear Temporal Logic

SCR Software Cost Reduction

ECA Event Condition Action

VDM Vienna Development Method

VDM-SL Vienna Development Method - Specification Language

FM Formal Method

PTL Propositional Temporal Logic

CTL Computational Temporal Logic

SCR Software Cost Reduction

AMN Abstract Machine Notation

viii

List of Tables

2.1 Truth tables for propositional operators 14
2.2 Meaning of temporal operators . 15
2.3 Truth table of implication operator . 19
2.4 Comparison of B, Z and VDM [1] . 27
2.5 Relations and functions in Event-B . 32
2.6 INV proof obligation . 34
2.7 VAR PO with numeric variant . 35
2.8 VAR PO with finite set variant . 35

3.1 Translation rules between database and Event-B 50
3.2 Formalizing a trigger . 51
3.3 Encoding trigger actions . 53
3.4 Table EMPLOYEES and BONUS . 55
3.5 INV PO of event trigger1. 58
3.6 Infinite loop proof obligation of event trigger1 59

4.1 Modeling a context rule by an Event-B Event 70
4.2 Transformation between context-aware systems and Event-B 70
4.3 Proof of context constraint preservation 78

5.1 INV PO of event evt4 . 106
5.2 Deadlock free PO of machine Crane M 1 107
5.3 VAR PO of event evt4 . 108

C.1 INV PO of event evt1 . 143
C.2 INV PO of event evt2 . 143
C.3 INV PO of event evt3 . 143
C.4 INV PO of event evt5 . 144
C.5 VAR PO of event evt1 . 144
C.6 NAT PO of event evt1 . 144
C.7 VAR PO of event evt2 . 144
C.8 NAT PO of event evt2 . 145
C.9 VAR PO of event evt3 . 145
C.10 NAT PO of event evt3 . 145
C.11 VAR PO of event evt5 . 145
C.12 NAT PO of event evt5 . 145

ix

List of Figures

1.1 Types of event-driven systems . 3
1.2 Thesis structure . 12

2.1 Basic structure of an Event B model 28
2.2 An Event-B context example . 29
2.3 Forms of Event-B Events . 30
2.4 Event-B refinement . 32
2.5 Event refinement in Event-B . 33
2.6 A convergent event . 35
2.7 The Rodin tool . 36
2.8 A layered conceptual framework for context-aware systems [2] 41

3.1 Partial Event-B specification for a database system 51
3.2 A part of Event-B Context . 56
3.3 A part of Event-B machine . 57
3.4 Encoding trigger . 58
3.5 Architecture of Trigger2B tool . 60
3.6 A partial parsed tree syntax of a general trigger 61
3.7 The modeling result of the scenario generated by Trigger2B 62

4.1 A simple context-aware system . 68
4.2 Incremental modeling using refinement 71
4.3 Abstract Event-B model for ACC system 75
4.4 Events with strengthened guards . 76
4.5 Refined Event-B model for ACC system 77
4.6 Checking properties in Rodin . 79

5.1 A part of Event-B specification for discrete transitions modeling 89
5.2 A part of Event-B specification for continuous transitions modeling . . 90
5.3 A part of Event-B specification for eventuality property modeling . . . 96
5.4 Container Crane Control system . 98
5.5 Safety properties are ensured in the Rodin tool automatically 107

x

Chapter 1

Introduction

1.1 Motivation

Nowadays, software systems become more complex and can be used to

integrate with other systems. Software engineers need to understand as

much as possible what they are developing. Modeling is one of effective

ways to handle the complexity of software development that allows to

design and assess the system requirements. Modeling not only represents

the content visually but also provides textual content. There are sev-

eral types of modeling language including graphical, textual, algebraic

languages.

In software systems, errors may cause many damages for not only eco-

nomics but also human beings, especially those applications in embed-

ded systems, transportation control and health service equipment, etc.

The error usually occurs when the system execution cannot satisfy the

characteristics and constraints of the software system specification. The

specification is the description of the required functionality and behavior

of the software. Therefore, ensuring the correctness of software systems

1

Chapter 1. Introduction 2

has always been a challenge of software development process and relia-

bility plays an important role deciding the success of a software project.

Testing techniques are used in normal development in order to check

whether the software execution satisfies users requirements. However,

testing is an incomplete validation because it can only identifies errors

but can not ensure that the software execution is correct in all cases.

Software verification is one of powerful methods to find or mathemati-

cally prove the absent of software errors. Several techniques and methods

have been proposed for software verification such as model-checking [3],

theorem-proving [4] and program analysis [5]. Among these techniques,

theorem proving has distinct advantages such as superior size of the sys-

tem and its ability to reason inductively. Though, theorem proving often

generates a lot of proofs which are complex to understand. Verification

techniques mainly can be classified into two kinds: model-level and im-

plementation level. Early verification of model specifications helps to

reduce the cost of software construction. For this reason, modeling and

verification of software systems are an emerging research topic in around

the world. Many approaches and techniques of modeling and verification

have been proposed so far. Each of them usually focuses on a typical

kind of software architecture or design styles.

In a traditional system, one component provides a collection of proce-

dures and functions via its interfaces. Components then interact with

each other by explicitly invoking those routines. Event-driven architec-

ture is one of the most popular architectures in software project develop-

ment providing implicit invocation instead of invoking routines directly.

Each component of an event-driven system can produce events, the sys-

tem then invoke all procedures which are registered with these events. An

Chapter 1. Introduction 3

event-driven system consists of three essential parts: monitoring compo-

nent, transmission component and responsive one. Since such systems

work by raising and responding to events, it looses coupling between

software components and improves the interactive capabilities with its

environment. The event-driven architectural style is becoming an essen-

tial part of large-scale distributed systems design and many applications.

It is a promising architecture to develop and model loosely coupled sys-

tems and its advantages have been recognized in both academia and

industry.

There are many types of event-driven systems including many editors

where user interface events signify editing commands, rule-based pro-

duction systems where a condition becoming true causes an action to

be triggered and active objects where changing a value of an object’s

attribute triggers some actions (e.g. database trigger systems) [6]. Fig-

ure 1.1 shows the hierarchy of listed event-driven systems. In this thesis,

we consider two applications of active objects and rule-based production

systems: database systems with triggers and context-aware systems.

Event−driven systems

...Rule−based production systemsGraphic user interfaces Active objects

Context−aware systems Database trigger systems

Figure 1.1: Types of event-driven systems

In event-driven systems, Event-Condition-Action (ECA) rules are pro-

posed as a declarative approach to specify relations when certain events

occur at predefined conditions. An ECA rule has the form: On Event

Chapter 1. Introduction 4

IF conditions DO actions that means when Events occurs, if conditions

holds, then actions is performed. We also can informally represent it by

if-then rules such as if Events occurs and condition holds, then perform

action. The advantages of this approach have been applied and incor-

porated in various application domains such as active database systems,

context-aware applications. There are a huge amount of studies working

on analysing event-driven systems as well as formalizing ECA rules.

Researchers have proposed many approaches to modeling and verifying

both centralized and distributed event-driven systems with model check-

ing techniques, which are based on temporal logic and computational

logic. Madl [7] presented an approach that defines a specification of a

formal semantic domain and proposed a model-checking method to ver-

ify distributed real-time embedded systems based on timed-automata.

Joanne Atlee and John Gannon [8] focused on formalizing event-driven

system requirements based on computational tree logic (CTL). I. Ray

and P.Annmann [9] proposed to use the B-Toolkit to detect safety viola-

tions in an example of software cost reduction (SCR) specification. Fiege

et al. [10] presented a formal specification of scopes and event mappings

within a trace-based formalism adapted from temporal logic. Tran and

Zdun [11] introduced formal specification of the event actors-based con-

structs and the graphical notations based on Petri nets in order to enable

formal analysis of such constructs. Calder and Savegnani [12] employed

a universal process algebra that encapsulates both dynamic and spa-

tial behaviour to extend and introduce a basic formalism of bi-graphical

reactive systems.

These approaches have been proposed to modeling and verifying general

even-driven systems. In fact, engineers often develop particular types

of event-driven systems which use ECA rules to react to raised events,

e.g., active databases and context-aware systems. In this case, these

Chapter 1. Introduction 5

general approaches are insufficient. Furthermore, almost existing work

of software verification focuses on analysing precise descriptions of the

system’s functionalities and behavior. There are a few of methods for

verifying event-driven systems which are described by vague, uncertain

or imprecise requirements.

For these reasons, new suitable methods for modeling and verifying such

systems are desirable. Moreover, if we can verify significant properties of

the system at early stage of design time, it will reduce cost of the system

development. It is also beneficial if they reduce the complexity of prov-

ing and is practical in software development. The thesis proposes new

methods to achieve that desire by using Event-B formal method [13].

It is an evolution of the B formalism [14] which was developed more

than ten years ago and which has been applied in the number of indus-

trial projects. Many researchers and research groups around the world

have been inspired by system modeling and verification with Event-B.

Hundreds of publications relating to Event-B have been published since

2004 [15]. Event-B notations are based on set theory, generalized substi-

tutions and the first order logic. It is more suitable for developing large

reactive and distributed systems. Software development in Event-B be-

gins by abstractly specifying the requirements of the whole system, then

refines them through several steps to reach a description of the system in

such a detail that can be translated into code. The consistency of each

model and the relationship between an abstract model and its refine-

ments are obtained by formal proofs. Support tools have been provided

for Event-B specification and proof in the Rodin platform [16]. Hence,

Event-B is totally matched for modeling and verifying event-driven sys-

tems.

Chapter 1. Introduction 6

1.2 Objectives

The thesis aims to provide new and effective approaches in comparison

with the existing work. Instead of working on analysing a general event-

driven system or proposing any new formal language of ECA, we focus on

modeling and verifying specific domain applications of the event-driven

architecture such as database systems and context-aware systems using

Event-B. The thesis objective is proposing methods that not only model

the behavior of these systems which are described by If-Then rules (ECA

rules) but also formalize significant properties by Event-B constructs.

The correctness of these properties are proved mathematically by proving

the Event-B generated proof obligations. The Rodin tool is used for

supporting modeling and verification process to reduce the complexity

with automatic proving.

The thesis directs at providing tools, which support for automatic trans-

lation from an application of event-driven systems to a target Event-B

model that makes less effort and reduces the difficulties in modeling pro-

cess. The output of these tools are expected to be able usable in the

Event-B supporting tools such as Rodin.

The thesis has another objective to analyse event-driven systems whose

behavior is described by imprecise requirements. These requirements

are represented by Fuzzy If-Then rules. The thesis introduces a new

refinement-based method for modeling imprecise requirements and veri-

fying the significant properties such as safety and eventuality properties

of such systems.

Chapter 1. Introduction 7

1.3 Literature review

Joanne Atlee and John Gannon [8] presented an approach to checking

event driven systems using model checking. They introduced a tech-

nique to transforming event-oriented system requirements into state-

based structures, then used a state-based checker to analyse. This

method can detect violations of systems invariants. However, it is gen-

eral approach therefore if we want to apply in a specific domain the one is

not easy to follow. Moreover, it is inefficient when requiring intermediate

steps to translate requirement into CTL machines.

Similarly, Ray I. and Ammann P. [9] also checked safety properties of

event-driven systems using B-Toolkit [17]. Even though this method can

translates SRC requirements to an Abstract machine notations (AMN)

machine [14] directly, it is still too abstract to apply in a specific domain

and has several limitations such as requiring developers to understand

SCR and target B model contains only single class.

Prashanth, C.M. [18] described an efficient method to detect safety spec-

ification violations in dynamic behavior model of concurrent/reactive

systems. The dynamic behavior of each concurrent object in a reactive

system is assumed to be represented using UML (Unified Modeling Lan-

guage) state chart diagram. The verification process involves building

a global state space graph from these independent state chart diagrams

and traversal of large number of states in global state space graph for

detecting a safety violation.

Jalili, S. and Mirzaaghaei, M. [19] proposed to use event-based real-time

logic (ERL) as a specification language in order to simply specify safety

properties. By applying aspect-oriented approach to instrumentation, we

can integrate runtime verification module (i.e. Monitor) with program

Chapter 1. Introduction 8

itself and minimize overhead of runtime verification too. The method,

called RVERL, consists of three phases. First, safety properties are ex-

tracted from program requirements specification. Second, properties are

mapped to timing, functional and deadline aspects which constitute the

monitor. Then it is weaved to the program source code. Third, at the

execution time, the monitor observes program behavior and prevent it

from property violations.

Amorim Marcelo and Havelund Klaus [20] introduced the temporal logic

HAWK, a programming-oriented extension of the rule-based EAGLE

logic, and its supporting tool for runtime verification of Java programs.

A monitor for a HAWK formula checks if a finite trace of program events

satisfies the formula. It has been shown capable of defining and imple-

menting a range of finite trace monitoring logics, including future and

past time temporal logic, metric (real-time) temporal logics, interval

logics, forms of quantified temporal logics, extended regular expressions,

state machines, and others. Monitoring is achieved on a state-by-state

basis avoiding any need to store the input trace. HAWK extends EA-

GLE with constructs for capturing parameterized program events such

as method calls and method returns.

Tran and Zeduh [11] introduced formal specification of the event actors-

based constructs and the graphical notations based on Petri nets in order

to enable formal analysis of such constructs. Based on this, an auto-

mated translation from event actors based constructs to Petri nets using

template-based model transformation techniques is also developed.

Feideiro et al. [21] proposed a mathematical semantics for event-based ar-

chitectures to characterize the modularization properties and to further

validate and extend the categorical approach to architectural modeling.

Chapter 1. Introduction 9

Posse E. et al. [22, 23] proposed a language for modeling, analysis and

simulation of time-sensitive, event-driven systems. It is a language from

an informal perspective and discuss its implementation based on event-

scheduling and time-warp for distributed simulation.

Calder M. et al. [12] employ a universal process algebra that encap-

sulates both dynamic and spatial behaviour to extend and introduce a

basic formalism of bi-graphical reactive systems. They presented a case

study involving wireless home network management and the automatic

generation of bi-graphical models, and their analysis in real-time.

Baouab Aymen et al. [24] proposed new components, to be deployed

along the boundaries of each participating organization, offering exter-

nal flow control, and notification in case of violation detection, while

providing process execution traceability. Then they proposed an event-

based approach in which inter-organizational exchanges are perceived as

events and define event patterns for filtering the desirable incoming and

outgoing messages.

These approaches and methods can be classified into two categories:

model-level verification and implementation-level verification. In this

thesis, we focus on the latter because it helps to detect errors in early

design phase. With the listed model-level verification methods, the com-

mon problems are that they are too general to apply in specific domains.

The research results relating to modeling and verifying the specific types

event-driven systems are discussed in detail in Chapter 3, Chapter 4, and

Chapter 5.

Chapter 1. Introduction 10

1.4 Contributions

Research contributions of this thesis are as follows.

1. This thesis introduces a new method to model and verify a database

trigger system using Event-B. This approach provides detailed steps

to translate database concepts to Event-B notations. The transla-

tion is based on the similarity between triggers which has the form

of ECA rules and Event-B events. The method reduces cost of de-

velopment because it can detect errors at early design phase and it

is easy to apply in practice. A tool partly supports for transforming

a database system with triggers is also developed.

2. The thesis continues investigating the benefit of similar acts between

ECA rules and Event-B events to propose a method to model and

verify context-aware systems. Furthermore, the thesis recognizes

the advantages of Event-B refinement mechanism to make the pro-

posed method suitable for incremental modeling. Significant prop-

erties, e.g., context constraints, are defined as invariants and can be

checked automatically using the supporting tool Rodin.

3. We consider a system, which is described by imprecise requirements.

Its behavior rules are now specified in the form of Fuzzy If-Then

rules. The thesis introduces a new representation of fuzzy terms

by classical sets and present a set of rules to translate Fuzzy If-

Then rules to Event-B constructs. We also make an extension by

introducing timed Fuzzy If-Then rules to model a timed system. The

thesis makes use of Event-B refinement and the proposed modeling

method to analyse some significant properties of imprecise system

requirements such as safety and eventuality properties.

Chapter 1. Introduction 11

1.5 Thesis structure

The remainder of this thesis is organized as follows.

Chapter 2 provides necessary backgrounds for the thesis. Firstly, we

briefly introduce about temporal logic, fuzzy sets and fuzzy If-Then rules.

Next, an overview of formal verification and some formal methods such

as VDM, Z and B is introduced. Event-B method and its supporting tool

RODIN then is discussed in more detail. An overview of event-driven

systems and their applications such as relational database systems and

context-aware systems are also given.

Next, Chapter 3 shows how a database system including triggers can

be modeled and verified using Event-B. We propose a new method with

a set of translation rules to translate database components to Event-B

notations. The method ensures the correctness of data constraint preser-

vation and enables us to discover infinite loops of the trigger execution.

A tool which partly supports for the modeling process is also developed.

We focus on modeling and verifying context-aware systems which use

context rules reacts to context changes in Chapter 4. A set of transla-

tion rules for mapping context-aware components and Event-B are pre-

sented. It is a refinement-based method that allows to model the system

gradually. After modeling, safety properties of these systems are proved

formally.

In Chapter 5, we consider the case that an event-driven system is de-

scribed with imprecise requirements, i.e., its behavior can be described

by Fuzzy If-Then rules. We propose a new representation of fuzzy terms

in classical sets and a refinement-based method to model both discrete

and continuous behavior of the system. We also present a new method

which makes use of Event-B refinement and existing methods to verify

Chapter 1. Introduction 12

safety and eventuality properties of imprecise system requirements. We

show that the verification is mostly conducted automatically using the

current RODIN tool.

Finally, Chapter 6 discusses contributions and limitations of the thesis.

It concludes and outlines the future research direction of the thesis. The

organization of the thesis is illustrated in Figure 1.2.

Modeling and verifying context−aware systems

Event−driven systems with imprecise requirements described by Fuzzy If−Then rules

Two types of event−driven systems with precise requirements using ECA structure

Backgrounds

Modeling and verifying imprecise systems requirements

Modeling and verifying database triggers systems
 (Chapter 3)

(Chapter 2)

 (Chapter 4)

(Chapter 6)
Conclusions

 (Chapter 5)

Figure 1.2: Thesis structure

Chapter 2

Backgrounds

In this chapter, we provide the related background knowledge for the

thesis. We first give a brief introduction of mathematical knowledge and

logic such as classical set theory, fuzzy sets and temporal logic. After

that, before presenting Event-B formal method in detail, an overview

of VDM and its two ancestor formal methods such as Z and B is also

given. Finally, we introduce the background of event-driven architecture

and its application in two domains such as database and context-aware

computing.

2.1 Temporal logic

In classical propositional logic, a proposition is evaluated to either true (>)

or false (⊥) A propositional formula is a syntactic expression built from

a set of atomic predicates also sometimes known as atomic propositions,

boolean variables, or simply predicates which we denote by lower case

letters: p, q , etc. The most simple propositional formula is an expression

known as an atom which merely consists of a single atomic predicate.

13

Chapter 2. Backgrounds 14

More complex formulas are then built from atoms using the connectives

such as conjunction (∧) , disjunction (∨), negation (¬), implication (⇒),

equivalence (⇔). Table 2.1 defines the meaning of the propositional logic

operators.

Table 2.1: Truth tables for propositional operators

∧ ⊥ >
⊥ ⊥ ⊥
> ⊥ >

∨ ⊥ >
⊥ ⊥ >
> > >

¬
⊥ >
> ⊥

A serious disadvantage of propositional logic is that it cannot be used to

describe the time-dependent behavior of the system [25]. Propositional

temporal logic (PTL) extends the descriptive power of propositional logic

to describe a sequence of states in different moments of time called time

instants. We assume that there is one designated time instant represent-

ing the present. Each time instant is followed by exactly one next time

instant. The truth of a temporal formula is determined by the truth

values of its atomic propositions which may vary from time instant to

time instant. The basic element of temporal logic language is a state

formula P, which is any first-order logic formula. It is built from atomic

predicates; the quantifiers ∃, ∀; the logical operators ∧, ∨ ,¬; and the

“temporal” operators �(“always”), ♦(“eventually”), and ◦(“next”), U
(“until”), W(“weak until”), R(“release”).

Linear temporal logic (LTL) is propositional temporal logic whose inter-

pretations are limited to transitions which are discrete, reflexive, tran-

sitive, linear and total [26]. Linear-time temporal logic (LTL) has the

following syntax given in Backus Naur form (Equation 2.1) [27]:

φ ::== > |⊥| p | (¬)φ | (φ ∨ φ) | (φ ∧ φ) | (φ⇒ φ) |

(�φ) | (♦φ) | (◦φ) | (φUφ) | (φWφ) | (φRφ)
(2.1)

Chapter 2. Backgrounds 15

where φ is a formula and p is any propositional atom.

Let σ be a non-empty sequence of states, i.e. σ = s0,...,sn where si is

a state. A state that satisfies a state predicate P is called P-state. Let

assume that P , P1, P2 are state predicates, temporal operators can be

interpreted in Table 2.2.

Table 2.2: Meaning of temporal operators

Operator Meaning

σ � ◦P σ is P-state in the next moment of time

σ � �P every state in σ are P-state.

σ � ♦P there exits some P-state in σ.

σ � P1UP2 there exists some P2-state sk in σ
and every state until sk (excluding sk) is P1-state.

2.2 Classical set theory

Sets are fundamental concepts that can be used to define all other con-

cepts in mathematics. The language of set theory is based on a single

fundamental relation, called membership. a is said to be a member of

B (denoted by a ∈ B), it means that B contains a as an element. A set

which has no element is called an empty set or null set. An empty set is

denoted by the symbol ∅ or {}. We recall some basic constructs of set

theory as follows:

Set comprehension. Given any non-empty set s , we can define a new

set by considering only those elements of s that satisfy some property p,

i.e. {x ∈ s | p}.

Example: a set of person who owns a red car and has a address is

expressed by {x ∈ Person | redcar(x), address(x)}.

Chapter 2. Backgrounds 16

Power set: If A is a set, then the set of all subsets of A is called the

power set of A, denoted by P(A).

Example: Let A be a set {x , y}, P(A) = {∅, {x}, {y}, {x , y}}.

Ordered pair: Given two sets A and B , one of the basic constructions

of set theory is the formation of an ordered pair, 〈a, b〉, where a ∈ A

and b ∈ B . The main property of ordered pairs is that if 〈a1, b1〉 and

〈a2, b2〉 are ordered pairs, where a1, a2 ∈ A and b1, b2 ∈ B , then 〈a1, b1〉
= 〈a2, b2〉 iff a1 = a2 and b1 = b2.

Cartesian product: Given two sets A and B , the set of all ordered

pairs 〈a, b〉, with a ∈ A and b ∈ B , is a set denoted A × B and called

the Cartesian product of A and B .

Relation: Given two sets A and B , a binary relation R between A and

B is any set of ordered pairs from A× B , i.e., R ⊆ A× B .

The domain of the relation R is denoted by dom(R) such that dom(R) =

{a ∈ A | ∃ b ∈ B , 〈a, b〉 ∈ R}.

The range of the relation R is denoted by ran(R) such that ran(R) =

{b ∈ B | ∃ a ∈ A, 〈a, b〉 ∈ R}.

The relation R is functional if ∀ a ∈ A and ∀ b1, b2 ∈ B , if 〈a, b1〉 and

〈a, b2〉, then b1 = b2.

Partial function: A partial function f from a set A to a set B , denoted

by f : A 7→ B is a relation that does not contain two distinct pairs with

the same first element. If dom(f) = A then f is a total function.

Example: If the set of all people is Person, and the set of all locations is

Location. We want to know the location of a person, then the information

may be described by a relation r ⊆ Person × Location. Moreover, at

Chapter 2. Backgrounds 17

one time, a person can only at a place. Hence, it can be described by a

partial function where : Person 7→ Location.

2.3 Fuzzy sets and Fuzzy If-Then rules

2.3.1 Fuzzy sets

Many real-world software systems are developed from requirements of

all stake holders. In fact, stake holders usually cannot describe the

system precisely. They often use vague, ambiguous, fuzzy terms such

as “very good”, “ far”, “hot”, etc. For example, a functionality of an air

conditioner is described as “When the outside temperature is hot, then

air conditioner becomes cooler”. In order to deal with systems which are

too complex or too ill-defined to admit of precise descriptions, Zadeh [28]

introduced a logic framework which is not traditional two-valued, but

multi-valued logics whose values are interpreted by Fuzzy sets.

Fuzzy sets are actually functions that map a value that might be a

member of a set to a number between zero and one indicating its actual

degree of membership. A fuzzy set F defined on an universal set X is a

set of ordered pairs illustrated in Equation 2.2 [29].

F = {(x , µF (x))} (2.2)

where x ∈ X and µF (x) : X → [0, 1] is termed as the grade of member-

ship of x in F .

Example: Let S be a set of all real numbers and let Sf is a set of positive

and large numbers. Then Sf = {x ∈ S | x is positive and large}.

Chapter 2. Backgrounds 18

We introduce a membership degree function to measure the fuzzy term

“large” as follows:

µlarge(x) =

 0 if x ≤ 0

1− e−x if x > 0
(2.3)

Fuzzy sets use so-called linguistic variables in addition to numerical vari-

ables. The values of a linguistic variable are labels of fuzzy subsets of X

which have the form of phrases or sentences in a natural or artificial lan-

guage. For example, height is a linguistic variable labeled x, the values

of x might be “tall”, “not tall”, “very tall”, or “tall but not very tall”.

Generally, a value of a linguistic variable is a concatenation of atomic

terms that can be divided into main categories shown below:

• primary terms: which are labels of specified fuzzy subsets of the

universe set (for instance: tall in the above example).

• hedges: such as “very”, “slightly”, etc.

• negation and connectives symbols (i.e not , and , or).

A fuzzy hedge is an operator which transforms the fuzzy set F (x) into

the fuzzy set F (hx). The hedges are the functions that generate a larger

set of values for linguistic variables. For instance, using hedge very along

with negation not applied to the term tall , we can have very tall or not

very tall.

2.3.2 Fuzzy If-Then rules

In classical propositional logic, the expression If A Then B, denoted

by A⇒ B , where A and B are propositional variables. The implication

operator is defined in the Table 2.3.

Chapter 2. Backgrounds 19

Table 2.3: Truth table of implication operator
A B A ⇒ B
T T T
T F F
F T T
F F T

We continue to consider the implication the implication a ⇒ b, where

a ∈ A,b ∈ B , and A,B are fuzzy sets. This implication can be repre-

sented as “IF a ∈ A is true with a truth value µA(a) THEN b ∈ B is

true with a truth value µB(b)”. Then it is written in a simple form: “If

a is A then b is B”. Generally, we have n fuzzy sets: A1, ...,An and a

fuzzy set B . Then the rule is defined as follows:

IF a1 is A1 and ... and an is An THEN b is B

Example: IF the weather is bad THEN the speed is slow.

Fuzzy If-Then rules play an important role in fuzzy sets. It provides an

approach to analysing imprecise description of systems. We usually use

these rules for describing the behavior of such systems.

2.4 Formal methods

One of important goals of software engineering is to enable developers to

build a complex software system with reliability. Formal methods which

can be used to specify and verify systems mathematically are one way

to accomplish this goal. A method is formal if it has well-defined math-

ematics basis, typically given by a formal specification language [30].

Chapter 2. Backgrounds 20

Formal specification is a process that describes the system and its de-

sired properties such as functional behaviour, timing behaviour, non-

functional properties by a language with mathematically-defined syntax

and semantics. When we make a formal specification, we need to make a

detailed systems analysis that usually reveals errors and inconsistencies

in the informal requirements specification. Two fundamental approaches

to formal specification have been used to describe specifications including

algebraic and model-based approaches.

• Algebraic approach: Systems are specified in terms of a sequence

of actions and their relationship. The algebraic approach is par-

ticularly suitable for the definition of sub-system interfaces. This

method of formal specification defines an object class or an abstract

data type in terms of the relationships between the type operations.

Several languages for algebraic specification have been developed

including Larch [31] and OBJ [32].

• Model-based approach: Model-based specification is an approach

to formal specification where the system specification is expressed

as a system state model. This state model is constructed using

well-understood mathematical entities such as sets and functions.

System operations are specified by defining how they affect the state

of the system model. The most widely used notations for developing

model-based specifications are Z [33] and VDM [34] which focus on

specifying sequential systems while CSP [35] and Petri Nets [36]

concentrates on specifying concurrent ones.

Formal verification methods have recently become usable by industry

and there is a growing demand for professionals able to apply them.

Two well-established approaches to verification are model checking and

theorem proving.

Chapter 2. Backgrounds 21

Model checking is a technique for verifying finite state concurrent sys-

tems such as sequential circuit designs and communication protocols. It

has a number of advantages over traditional approaches that are based

on simulation, testing, and deductive reasoning. In particular, model

checking is automatic and usually quite fast. Also, if the design contains

an error, model checking will produce a counterexample that can be used

to find the source of the error. The main challenge in model checking

is dealing with the state space explosion problem. This problem occurs

in systems with many components that can interact with each other or

systems with data structures that can assume many different values. In

such cases the number of global states can be enormous.

Theorem proving is a technique where both the system and its desired

properties are specified in mathematical logic formulas. It is a process

which finds the proof of a property from axioms of the system. Let Γ is

a set formulas of the system’s description, ψ is a formula of the system’s

properties specification. Then this verification method tries to find the

a proof Γ ` ψ.

The thesis uses Event-B formal method to model and verify event-driven

systems. Hence, before introducing it we briefly present several different

formal methods which inspire Event-B’s ideas such as VDM, Z [33], B

[14]. Z and B are both invented by J. Abrial and his colleagues.

2.4.1 VDM

VDM stands for “The Vienna Development Method” which a collection

of techniques for the formal specification and development of computing

systems. VDM is a model-based method giving descriptions of soft-

ware systems and other systems as models [37]. Models are specified

Chapter 2. Backgrounds 22

as objects and operations on objects, where the objects represent input,

output, and internal state of the system. It consists of a specification lan-

guage called VDM-SL (VDM-Specification Language); rules for data and

operation refinement that allow one to establish links between abstract

requirements specifications and detailed design specifications down to

the level of code; and a proof theory in which rigorous arguments can be

conducted about the properties of specified systems and the correctness

of design decisions. VDM-SL is a model-oriented specification language.

This means that a specification in VDM-SL consists of a mathematical

model built from simple data types like sets, lists and mappings, along

with operations which change the state of the model. VDM-SL has a

formally defined semantics. The logic underlying this semantics is based

on the Logic of Partial Functions (LPF).

A VDM-SL model is a system description given in terms of the function-

ality performed on data. It includes a collection of definitions of data

types and functions or operations performed upon them. Several data

types are defined in VDM-SL such as bool, nat, nat1, int, rat, real, char,

token.

A traditional abstract VDM model usually contains the following com-

ponents:

• Semantic domains: to define the involving objects.

• Invariants: to define a set of conditions to limit the set of operat-

ing objects defined by the semantic domains by defining a set of

conditions.

• Syntactic domains: to define the syntax for manipulating the objects

defined by the semantic domains.

Chapter 2. Backgrounds 23

• Semantic functions: to define the effect of commands on the ob-

jects defined by the semantic domains.

2.4.2 Z

The Z notation is based upon set theory and first-order predicate cal-

culus. Every object in the mathematical language has a unique type,

represented as a maximal set in the current specification. One aspect

of Z is the use of natural language. It uses mathematics to state the

problems, to discover solutions, and to prove that the chosen design

meets the specification. Z provides refinement mechanism that allows

to develop the system gradually. A Z specification document consists of

interleaved passages of formal, mathematical text and informal explana-

tion [33]. The formal text consists of a sequence of paragraphs which

gradually introduce the schemas, axioms, constraints and basic types of

the specification.

• Basic type declaration: A basic type definition introduces one or

more basic types. These names must not have a previous global

declaration, and their scope extends from the definition to the end

of the specification. It has the form as follows:

Paragraph ::= [Ident , ..., Ident]

where Paragraph is declaration paragraph and Ident is a Word.

• Axiomatic descriptions: An axiomatic description introduces global

variables which have not been declared before. While the part

[declaration] is an acceptable form of axiom descriptions and is re-

quired, the part [predicates] is optional. If the part [predicates] is

Chapter 2. Backgrounds 24

absent, then the default predicate is true. The axioms have the form

as follows:

[declaration]

[predicates]

• Schemas: Schema specifications consists of three parts: schema

name, declaration, and predicates. The part schema name which

have not been declared before is the identifier of the schema. The

part declaration contains one or more declarations and while the

part predicates includes one or more predicates. A schema has the

form as follows:

SchemaName

D1; ...; Dn

P1; ...; Pn

where D1...Dn are declarations and P1...Pn are predicates.

2.4.3 B method

B is a formal method for specifying, designing, and coding software sys-

tems. The main idea of B is to start with a very abstract model of

the system under development and gradually add details by building a

sequence of more concrete models [14]. B provides the concept of an

abstract machine which encapsulates a set of mathematical items, con-

stants, sets, variables and a collection of operations on these variables.

These elements are contained in a named module which can be seen or

Chapter 2. Backgrounds 25

used in other modules. A general specification of an abstract machine

can be written as follows:

MACHINE M(p)

CONSTRAINTS CONSTANTS k

PROPERTIES p

VARIABLES v

INVARIANT I

INITIALIZATION L

OPERATIONS

y ← op(x)

PRE P

THEN

S

END

......

END

The machine clauses have the following syntax and semantics:

• parameters : The machine M can have a list of parameters p. These

parameters are assumed to be independent of each other and their

logical properties are specified by CONSTRAINTS clauses.

• sets : Each item defined in the sets clause is corresponding to a

definition of given or enumerated sets.

• constants : this clause contains a list of identifiers which are constant

within the operations of the machine.

• properties : The clause containing predicates and formula conjunc-

tion defines logical properties for sets and constants.

Chapter 2. Backgrounds 26

• variables : It consists of a list of identifiers which can be separated

by comma. The clause introduces the variables (components) of the

state of the machine.

• invariant : It define constraints of variables including the typing of

the variables. It consists of predicates and formulas of variables,

constants, sets and parameters of the machine.

• operations : The clauses modifying the state variables defines the

dynamic part of the machine. The input and output parameters

declaration has the form: y ← opname(x).

Before-After predicates: These predicates are used to express vari-

ables state modification relating variables values at just before and after

the operations take place. The before− value and after − value relate to

each other by both deterministic and non-deterministic ways.

Substitutions: Substitutions describe the specifications of the opera-

tions with BEGIN...END structures. B method provides several kinds

of substitutions as follows:

• Multiple simple substitutions have the form: [x , y := E ,F] P where

x and y are two distinct variables, E and F two expressions and

P a formula. It denotes P where free occurrences of x and y are

replaced simultaneously by E and F respectively.

• Conditional substitution is defined by means of the IF ... THEN

... ELSE ... END construct.

• Bounded choice substitution gives a notation to express the choice

between two substitutions S and T . It introduces a kind of bounded

non-determinism.

Chapter 2. Backgrounds 27

Table 2.4: Comparison of B, Z and VDM [1]

Attributes Z VDM B
Basis Predicate Calculus, Partial Weakest

Set theory, Functions Preconditions,
Schema Set Theory Set Theory

Development Specification Specification Specification
Stages Design Design,

Implementations
Style Schema Pre/Post Rigorous

Notations, Conditions, Programming
Relations Functions Language

Tool At specification At specification All development
Support level level stages

Table 2.4 lists and compares the main attributes of Z, B and VDM.

There are several supporting tools for B method including open source

and commercial licences. The B Toolkit [17] generates proof obligations

and provides supporting tools for the automatic discharge of those proof

obligations. It also supports for the generation of documentation, and

for the browsing of developments. Atelier-B [38] is an industrial tool

that allows for the operational use of the B Method. This tool has been

used in various subways systems and automotive industry.

2.5 Event-B

2.5.1 An overview

Event-B is a formal method for system-level modeling and analysis and

is an evolution of B-method. Key features of Event-B are the use of set

theory as a modeling notation, the use of refinement to represent systems

at different abstraction levels and the use of mathematical proof to verify

consistency between refinement levels [13]. An Event B model encodes

a state transition system where the variables represent the states and

Chapter 2. Backgrounds 28

the events represent the transitions from one state to another. The

structure of an Event B model is given in Figure 2.1 consisting of two

basic constructs: machines and contexts. Contexts are static parts of

a model, while machines specify the dynamic parts of a model. The

relationship between a machine and a context is see, i.e., the machine

can refer to elements defined in the context .

CONTEXT

EXTENDS

CONSTANTS

AXIOMS

.....

....

....

....

.....

SETS
<<see>>

MACHINE
...

REFINES
...

VARIABLES
...

INVARIANT
...

EVENTS
....

Figure 2.1: Basic structure of an Event B model

2.5.2 Event-B context

An Event-B context describes the static part where all the relevant prop-

erties and hypotheses are defined. Each context has an unique name

which is different from others elements of Event-B. A context can ex-

tend another context, i.e. it can refer to sets of clauses defined in the

extended context. A context generally consists of the following items:

• Sets are items which describe a set of abstract and enumerated types.

• Constants are clauses containing a list of constants introduced in a

context. Each constant also has a distinct identifier.

• Axioms are a list of various predicates of constants in first-order

logic expression. These predicates will be present as hypotheses of

Chapter 2. Backgrounds 29

all proof obligations. Types and constraints are described in this

clause.

• Theorems are logical expressions which have to be proved from the

axioms.

An example of a context is given in Figure 2.2 in which we have a context

named ctx 0 with a set PERSON and two constants n and fid , where n

is a natural number and fid is a total function that maps from PERSON

to a set of natural numbers.

CONTEXT ctx 0

SETS

PERSON

CONSTANTS

n

fid

AXIOMS

axm1 : n ∈ N
axm2 : fid ∈ PERSON→ N

THEOREMS

thm1 : n ≥ 0

END

Figure 2.2: An Event-B context example

2.5.3 Event-B Machine

Sets and constants defined in a context can be used by a machine which

is composed of a set of clauses. A machine can see a context and refine

another machine. A general structure of an Event-B machine consists of

items as follows:

• Variables represent the state of the model.

Chapter 2. Backgrounds 30

• Invariants are first order logic expressions describing the properties

of the attributes defined in the variables clause. These properties

are true in the whole model. Invariants need to be preserved by all

events execution.

• Theorems define a set of logical expressions that can be deduced

from the invariants. Unlike invariants, they do not need to be proved

to be preserved by events.

• Events define all the events that occur in a given model. An Event-

B event consists of a guard G(t , v) and an action A(t , v), where t is

any parameter of the event, v is the variable. An event is fired when

its guard G(t , v) is evaluated to true. If several guards evaluate to

true, only one is fired with a non deterministic choice. Action A(t , v)

describes how variables involve in the events. There are three forms

of an Event-B event illustrated in Figure 2.3. An event E1 is a form

with parameters, an event E2 without any parameter, and an event

E3 without any guard.

begin

then

end

then

end

E1 E2

E3

end

any t where

G(t , v)

S (t , v)

when

G(v)

S (v)

S (v)

Figure 2.3: Forms of Event-B Events

The action of an event may be skip or composed of several assign-

ments of the form.

x := E (t , v) (2.4)

Chapter 2. Backgrounds 31

x :∈ E (t , v) (2.5)

x :| E (t , v) (2.6)

The action assignment having the form 2.4 is deterministic which directly

assigns E (t , v) to x . Assignment in form 2.5 is non-deterministic which

assigns an element of set E (t , v) to x . Assignment in form 2.6 is a

generalized form of assignment.

2.5.4 Event-B mathematical language

The basis for the formal models in Event-B is first-order logic and set

theory. The first-order logic of Event-B contains standard operators

such as conjunction(∧), disjunction(∨), implication(⇒), equivalence(≡),

negation(¬), universal quantification(∀), existential quantification (∃).

Event-B mathematical language has an important part which is set-

theoretical notation, with the introduction of the membership predicate

E ∈ S , i.e. the expression E is a member of set S . A set can be defined

by listing all its members, or constructed by Cartesian product, power

set and set comprehension.

For example, given two sets S and T , the Cartesian product of S and T

is stated S ×T which is the set of ordered pairs x 7→ y where x ∈ S and

y ∈ T . The power set of S is denoted by P(S) is the set of all subsets of

S . Set comprehension {x ∈ E | P} is the set of elements of E such that

P holds where E is an set and P is a predicate.

Event-B set-theoretical notation has a key feature which is the relations

and functions. Given a relation r , two sets S and T , and two distinct

variables a and b. The definition of some functions and relations in

Event-B is illustrated in Table 2.5.

Chapter 2. Backgrounds 32

Table 2.5: Relations and functions in Event-B
Event-B construct Definition

r ⊆ S ↔ T r ⊆ P(S × T)
dom(r) {a ∈ S | ∃ b ∈ T , 〈a, b〉 ∈ r}
ran(r) {b ∈ T | ∃ a ∈ S , 〈a, b〉 ∈ r}

2.5.5 Refinement

To deal with complexity in modeling systems, Event-B provides a refine-

ment mechanism that allows us to build the system gradually by adding

more details to get more precise models. A context can be extended by

at most another context. A concrete Event-B machine can refine at most

one abstract machine. The sets and constants of an abstract context are

kept in its refinement. In other words, the refinement of a context just

consists of adding new carrier sets and new constants to existing sets and

constants. These are defined by means of new properties. Refinement of

context and machine in Event-B is illustrated in Figure 2.4.

Cn

C1M1

C2M2

sees

extends

refines extends

refines

Mn

Figure 2.4: Event-B refinement

A refined machine usually has more variables than its abstraction as

we have new variables to represent more details of the model. Event-B

Chapter 2. Backgrounds 33

currently provides two types of refinement including superposition re-

finement and vertical refinement. In former, the abstract variables are

retained in the concrete machine, with possibly some additional vari-

ables. The later is similar to data refinement where the abstract vari-

ables v are replaced by concrete ones w . Subsequently, the connections

between them are represented by the relationship between v and w , i.e.

gluing invariants J (v ,w).

Each event of an abstract machine is refined by one or more concrete

events of refined machines. In Figure 2.5, event ea is refined by event

ec.

ec

then

end

ea

then

end

any t where

G(t , v)

S (t , v)

any u where

H (u,w)

T (u,w)

refines ea

Figure 2.5: Event refinement in Event-B

2.5.6 Proof obligations

In order to check if a machine satisfies a collection of specified properties,

Event-B defines proof obligations (POs) which we must prove. They are

automatically generated by the Rodin tool called proof obligation gen-

erators. This tool statically checks the syntax of the model including

contexts and machines, then decides what to be proved. This outcome

Chapter 2. Backgrounds 34

is then transferred to the provers for automatically or interactively prov-

ing. We will discuss some of the proof obligations which are relevant

to the thesis such as: invariant preservation (INV), convergence (VAR),

deadlock-freeness (DLF).

Invariant preservation proof obligation (INV PO) rule means that

we must prove that invariants hold after event’s execution. Let assume

that we use an event evt defined as follows

evt
any x where

G(s , c, v , x)
then

v :| G(s , c, v , x)
end

The INV proof obligation of invariant inv of the event ev is named

“evt/inv3/INV”. The proof obligation is shown in Table 2.6.

Table 2.6: INV proof obligation
Axioms A(s , c)
Invariants I (s , c, v)
Guards G(s , c, v , x) evt/inv3/INV
Before-after predicates BA(s,c,v,x,x’)
` `
Modified invariant I (s , c, v ′)

Variant proof obligation(VAR PO) rule ensures that each conver-

gent event decreases the proposed numeric variant or proposed finite set

variant. Let assume that a convergent is defined in Figure 2.6.

Then, its VAR PO is define as Table 2.7 and Table 2.8. The former is

the case that variant n(s , c, v) is numeric and the later is the case that

t(s , c, v) is a finite set.

Deadlock-freeness for a machine ensures that there are always some

enabled events during its execution. Assume that a machine contains a

set of n events ei(i ∈ 1..n) of the following form: evt = any x where

Chapter 2. Backgrounds 35

evt

then

end

convergent

status

any x where

G(x , s , c, v)

v :| BA(s , c, v , x , v ′)

Figure 2.6: A convergent event

Table 2.7: VAR PO with numeric variant
Axioms A(s , c)
Invariants I (s , c, v)
Guards G(s , c, v , x) evt/VAR
Before-after predicates BA(s,c,v,x,x’)
` `
Modified variant is smaller n(s , c, v ′) < n(s , c, v)

Table 2.8: VAR PO with finite set variant
Axioms A(s , c)
Invariants I (s , c, v)
Guards G(s , c, v , x) evt/VAR
Before-after predicates BA(s,c,v,x,x’)
` `
Modified variant is smaller t(s , c, v ′) ⊂ t(s , c, v)

G(x , v) then A(x , v , v ′) end. The proof obligation rule for deadlock-

freeness is illustrated in Equation 2.7.

I (v) `
n∨

i=1

(∃ xi .G(xi , v)). (2.7)

Chapter 2. Backgrounds 36

2.6 Rodin tool

This thesis uses The RODIN toolkit version 2.8 [16] which is an Eclipse

environment for modeling and proving in Event-B. It is built on top

the Eclipse platform and it contains a set of plug-ins used to support

modeling and proving Event-B models. The Rodin tool provides a rich of

perspective windows to user such as proving, Event-B editors, etc.(Figure

2.7).

Figure 2.7: The Rodin tool

We present some important windows as follows:

• Proving perspective: It provides all proof obligations which are auto-

matically generated for Event-B machines. These proof obligations

can be discharged automatically or interactively with hypotheses

and goal windows.

Chapter 2. Backgrounds 37

• Event-B perspective: This perspective includes windows which al-

lows us to edit Event-B machines and contexts. If users encode

incorrectly, problem windows will show the error’s content.

2.7 Event-driven systems

Contrasting with centralized systems where control decisions are deter-

mined by the values of system state variables, event-driven systems are

driven by externally generated events. There are many types of event-

driven systems including many editors where user interface events signify

editing commands, rule-based production systems which are used in AI

where a condition becoming true causes an action to be triggered, and

active objects where changing a value of an object’s attribute triggers

some actions [6]. In the thesis, we consider two later kinds of event-driven

systems: context-aware systems and database triggers systems.

2.7.1 Event-driven architecture

In software systems, an event can be defined as a notable thing that

happens inside or outside the system. The term event refers to both the

specification and instances of events. An event usually has event header

and event body. While the former contains event’s description, the latter

specify what happened.

In an event-driven system, its components cooperate by sending and re-

ceiving events. The sender delivers an event to an dispatcher. The event

dispatcher is in charge of distributing the event to all the components

that have declared their interest in receiving it. Thus, the event dis-

patcher allows decoupling between the sources and the recipients of an

Chapter 2. Backgrounds 38

event. A common event-driven system has three general styles of event

processing: simple, stream, and complex ones. It may consist of some

main parts such as event processing, event tooling, source and target,

event meta-data.

Event-driven architecture allows to build applications and systems which

are more responsive. It also allows to develop and to maintenance the

large-scale, distributed software systems involving unpredictable occur-

rences.

In this thesis, we consider two applications of active objects and rule-

based production systems: active databases and context-aware systems.

Both systems use form of Event-Condition-Action (ECA) rules to de-

scribe their behavior. Besides this common characteristic, each system

has specific and interesting properties need to be analyzed.

2.7.2 Database systems and database triggers

Database management system can be classified broadly into two types

as follows:

• In passive database management systems, users query the current

database to retrieve the corresponding data of these queries. Tradi-

tional database management systems are passive because they pas-

sively wait for actions from users then response. After returning

data for queries, they wait again for the next queries.

• Active database management systems are data-driven or event-driven

systems. They use active rules to react to database changes. A

set of active database rules defines reactive behavior of the active

database.

Chapter 2. Backgrounds 39

A relational database system which is based on the relational model

consists of collections of objects and relation, operations for manipula-

tion and data integrity for accuracy and consistency. Modern relational

database systems include active rules as database triggers responding to

events occurring inside and outside of the database.

Database trigger is a block code that is automatically fired in response to

an defined event in the database. The event is related to a specific data

manipulation of the database such as inserting, deleting or updating a

row of a table. Triggers are commonly used in some cases: to audit

the process, to automatically perform an action, to implement complex

business rules. The structure of a trigger follows ECA structure, hence

it takes the following form:

rule name:: Event(e) IF condition DO action

It means that whenever Event(e) occurs and the condition is met then

the database system performs actions . Database triggers can be mainly

classified by two kinds: Data Manipulation Language(DML) and Data

Definition Language (DDL) triggers. The former is executed when data

is manipulated, while in some database systems, the latter is fired in

response to DDL events such as creating table or events such as login,

commit, roll-back, etc.

Users of some relational database systems such as Oracle, MySQL, SyBase

are familiar with triggers which are represented in SQL:1999 format [39]

(the former is SQL-3 standard). The definition of SQL:1999 trigger has

the syntax as follows:

Chapter 2. Backgrounds 40

CREATE [OR REPLACE] TRIGGER <trigger_name >

{BEFORE|AFTER} {INSERT|DELETE|UPDATE}

ON <table_name >

[REFERENCING [NEW AS <new_row_name >]

[OLD AS <old_row_name >]]

[FOR EACH ROW

[WHEN (<trigger_condition >)]]

<trigger_body >

2.7.3 Context-aware systems

The term “context-aware” was first introduced by Bill Schilit [40], he

defined contexts as location, identities of objects and changes of those

objects to applications that then adapt themselves to the context. Many

works have been focused on defining terms of context awareness. Abowd

et al. [41] defined a context aware system is a system that has the

ability to detect and sense, interpret and respond to aspects of a user’s

local environment and to the computing devices themselves. Context-

aware systems can be constructed in various methods which depend on

requirements and conditions of sensors, the amount of users, the re-

source available on the devices. A context model defines and stores

context data in a form that machines can process. Baldauf et al. [42]

summarized several most relevant context modeling approaches such as

key-value, markup scheme, graphical object oriented, logic based and

ontology based models. Chen [2] also defined three different approaches

to achieving contextual data as follows:

Chapter 2. Backgrounds 41

• Direct sensor access: The systems directly gather contextual data

from built-in sensors. This approach does not require any additional

layer but it is just suitable for simple cases not for distributed sys-

tems.

• Middle-ware infrastructure: It introduced layered architecture to

separate business logic and user interfaces of the system. The system

is extensible because it does not have to modify if sensors access

changes.

• Context server: It allows multiple clients to use same resources. This

approach is based on client-server architecture. Collected contextual

data is stored in a so-called context-server. Clients use appropriate

network protocols to access and use this data.

Figure 2.8: A layered conceptual framework for context-aware systems [2]

Figure 2.8 illustrates a layered conceptual framework for context-aware

systems. The first layer consists of physical or virtual sensors which are

able to capture context data from the environment. The second layer is

able to retrieve data from sensors using providing API. Before storing

the data in the fourth layer, it can be preprocessed in the third layer

Chapter 2. Backgrounds 42

which is responsible for reasoning and interpreting contextual informa-

tion. Finally, the application layer actually implementing reactions to

different events which are raised by context changes.

In this thesis, we focus on a context-aware system which directly uses

contextual data from physical sensors. The system senses many kinds of

contexts in its working environment such as position, acceleration of the

vehicle and/or temperature, weather, humidity, etc.. Processing of the

system is context-dependent, i.e., it react to the context changes (for ex-

ample: if the temperature is decreased, then the system starts heating).

The system’s behavior must comply with the context constraints prop-

erties (for instance: the system does not start heating, even though the

operator executes heating function when the temperature is very high).

2.8 Chapter conclusions

In this chapter, we provided necessary backgrounds for the thesis. Sec-

tion 2.2 provides basic knowledge about set theory which is one of the

mathematic foundations of formal methods mentioned in the thesis. Sec-

tion 2.1 and 2.3 are backgrounds of Chapter 5. Temporal logic can be

used for presenting the liveness properties while Fuzzy sets and Fuzzy

If-Then rules are used for describing the behavior of the imprecise sys-

tem requirements. Section 2.4 gives an overview of formal verification

and three formal methods such as VDM, Z, and B. The common point of

these methods is that they use classical set theory as their basis. These

ones also have the same approach of model-based specification. Section

2.5 presents about Event-B which is an evolution of B method in detail,

because it is the formal language used for proposing methods of the the-

sis. Section 2.7 introduces briefly about event-driven architecture and

Chapter 2. Backgrounds 43

its two domain applications such as database systems and context-aware

systems which will be referred in Chapter 3 and Chapter 4 respectively.

In the next chapter, we present the first research result of the thesis on

modeling and verifying database trigger systems using Event-B.

Chapter 3

Modeling and verifying database

trigger systems

3.1 Introduction

Nowadays, many database applications are developed and used in many

fields of modern life. Traditional database management systems (DBMSs)

are passive as the database executes commands when applications or

users perform appropriate queries. The research community has rapidly

realized the requirement for database system to react to data changes.

The event-driven architecture has been applied in active database sys-

tems to monitor and react to specific events happened in and outside

the system. One of popular approaches which are used for specifying

reactive semantics is Event-Condition-Action (ECA) rules. ECA rules

have three parts: event , condition, and action parts. The event part

describes the event happening inside or outside the system that the rule

will handle. The condition part of the rule specifies the situation where

the event occurs. The action part describes tasks which are performed

44

Chapter 3. Modeling and verifying database trigger systems 45

if the corresponding event in the first part and the second part of the

rule are evaluated to true.

Most of modern relational databases include these features in the form of

database triggers. They use triggers to implement automatic task when

a predefined event occurs. Triggers have two kinds: data manipulation

language (DML) and system triggers. The former are fired whenever

the DML statements such as deleting , updating , insert statements are

executed, while the latter are executed in case that system or data def-

inition language (DDL) events occur. A trigger is made of a block of

code and has a syntax, for example, an Oracle trigger is similar to a

stored procedure containing blocks of PL/SQL code. Trigger codes are

human readable and does not have any formal semantic. Therefore, we

can only check if a trigger conflicts to data constraints or leads to a

infinite loop after executing it or with human inspection step by step.

Hence, research work on a formal framework for modeling and verifying

database triggers is desirable. Moreover, it is valuable if we can show

that triggers execution is correct at early stage because it reduces the

cost of database application development.

Several work have attempted to investigate in this topic by using ter-

mination detection algorithms or model checking [43, 44, 45, 46, 47].

However, most of work focused on the termination property, while few

of them addressed to data constraints of the database system. A trigger

is terminated but it still can cause critical problems if it violates data

constraints. Furthermore, these approaches seem so complicated that we

can not easily apply in the real database development.

In this chapter, we propose a new method to formalize and verify database

triggers system using Event-B at early design phase. The main idea of

the method comes from the similar structure and working mechanism of

Chapter 3. Modeling and verifying database trigger systems 46

Event-B events and database triggers. First, we propose a set of transla-

tion rules to translate a database system including triggers to an Event-B

model. In the next step, we can formally check if the system satisfies

data constraints preservation and find critical errors such as infinite loops

by proving the proof obligations of the translated Event-B model. The

advantage of our method is that a real database system including trig-

gers and constraints can be modeled naturally by Event-B constructs

such as invariants and events . The method also reuses Event-B proof

obligations to prove such important properties of the systems. There-

fore, the correctness of the entire system can be achieved mathematically

and errors can be found by formal proofs. It is valuable especially for

database application development since we are able to ensure that the

trigger systems avoid the critical issues at the design time. With the sup-

porting tool Rodin, almost proofs are discharged automatically, hence it

reduces complexity in comparison to manual proving. We implement a

tool called Trigger2B following the main idea to transform a database

trigger model to a partial Event-B model automatically. It makes sense

as we can bring the formal verification to database implementation. It

also overcomes one of disadvantages that makes formal methods absent

in the database development process because of the modeling complexity.

The remainder of this chapter is organized as follows: Section 3.2 summa-

rizes the related research work. In Section 3.3, we present our method

to model and check database systems including triggers. Section 3.4

introduces an extracted scenario of a human resource management ap-

plication to demonstrate the model in detail. Section 3.6 concludes this

chapter.

Chapter 3. Modeling and verifying database trigger systems 47

3.2 Related work

Many research work have been proposed for active rules or triggers verifi-

cation. From the beginning, the work mainly focused on the termination

of the triggers by using static analysis, e.g. checking set of triggers is

acyclic with triggering graphs. In [43, 44], Sin-Yeung Lee and Tok-Wang

introduced algorithms to detect the correctness of updating triggers.

However, this approach was not able to be extended apparently for gen-

eral triggers and it was presented as their future work. Our proposed

method is able to handle with update, insert, and delete triggers. Fur-

thermore, it also can check data constraint property.

E.Baralis [48] improved existing techniques to statically check if active

rules are terminated or confluent. This approach is based on relational

algebra that can be applied widely for active database rule languages

and for trigger language (SQL:1999). In comparison to our proposed

method, it does not consider data constraint property.

L. Chavarria and Xiaoou Li [46] proposed a method to verify active rules

by using conditional colored Petri nets. Since Petri nets are mainly used

in modeling transitions, it is quite elaborated when normalizing rules.

The approach has to classify rules by their logic conditions to check if

they involve disjunction or conjunction operators. In our opinion, if the

number of these operators are enormous then the transition states can be

exploded. The rule normalizing process also prevent database engineers

to apply the method in the development.

Some work applied model checking techniques for active database rule

analysis. In [49], T. S. Ghazi and M. Huth presented an abstract mod-

eling framework for active database management systems and imple-

mented a prototype of a Promela code generator. However, they did not

Chapter 3. Modeling and verifying database trigger systems 48

describe how to model data and data manipulation actions for evalua-

tion.

Eun-Hye CHOI et al. [50] proposed a general framework for modeling

active database systems and rules. The framework is feasible by using a

model checking tool, e.g SPIN, however, constructing a model in order

to verify the termination and safety properties is not a simple step and

can not be done automatically.

More recently, R. Manicka Chezian and T.Devi [51] introduced a new

algorithm which does not pose any limitation on the number of rules

but it only emphasizes on algorithms detecting the termination of the

system. This approach, however, just checks the termination property.

In comparison to these approaches and methods, our proposed method

is more suitable for database trigger systems. It is also such practical

such that the tool Trigger2B can automatically translate a database

system with simple triggers to Event-B models. It helps to reduce the

complexity in system modeling.

3.3 Modeling and verifying database triggers sys-

tem

As stated above, it is interesting to know whether a database system is

designed correctly. Formal modeling of the system helps us not only to

have a better understanding of the system but also enable us to verify the

system’s correctness and to resolve errors. In this section, we introduce

a new method to model and verify a database system including triggers.

This method allows to detect infinite loops and provides a warranty for

data constraints preservation.

Chapter 3. Modeling and verifying database trigger systems 49

3.3.1 Modeling database systems

A database system is normally designed by several elements such as

tables (or views) with integrity constraints and triggers. Whenever users

modify the database table contents, i.e., executing Insert, Delete and

Update statements, this data modification can fire the corresponding

triggers and should be conformed to constraints. Before modeling a

database system by Event-B, we introduce some database definitions in

set theory which are the basis for modeling process.

Definition 3.1 (Database system). A database system is modeled by

a 3-tuple db = 〈T ,C ,G〉, where T is a set of table, C states system

constraints, and G indicates a collection of triggers.

Definition 3.2 (Table). For each t ∈ T , denoted by a tuple t =

〈r1, .., rm〉, where m is the total number of rows in the table t , ri is a

set indicating the i-th row of the table, (i ∈ 1..m). A row is stated by a

tuple ri = 〈fi1, .., fin〉, where n is total number of columns, fij represents

data of column j at row i and j ∈ 1..m.

Definition 3.3 (Trigger). Each trigger g , g ∈ G of the system is pre-

sented as a 3-tuple g = 〈e, c, a〉, where e is type of the trigger’s event, c

is condition of the trigger, and a is the action of the trigger.

Based upon these definitions, we present a set of translation rules to

translate a database model to an Event-B model illustrated in Table 3.1.

These rules are described in detail as follows:

• Rule 1. A database system is formalized by a pair of Event-B ma-

chine and context: 〈DB M ,DB C 〉.

• Rule 2. A table is presented by a Cartesian product of N sets T =

{TYPE1×TYPE2× ..×TYPEn}, where TYPEi denotes data type

of column i .

Chapter 3. Modeling and verifying database trigger systems 50

• Rule 3. For each table T , we add a variable t such that t ∈ P(T)

to the machine DBM .

• Rule 4. Each table T has a primary key constraint. We encode this

kind of constraints as a bijective function f : TYPE1 7 7→ (TYPE2 ×
.. × TYPEn), we assume that the first column of the table is the

primary key.

• Rule 5. A data constraint C is formalized by a invariant I.

• Rule 6. A trigger E is translated to an event Evt .

The translation rules are summarized in Table 3.1.

Table 3.1: Translation rules between database and Event-B
Database definitions Event-B concepts

Rule 1. db = 〈T ,C ,G〉 DB M ,DB C
Rule 2,3 ri = 〈fi1, .., fin〉 t ∈ P(T)

t = 〈r1, .., rm〉 T = TYPE1 × TYPE2 × ..× TYPEn

Rule 4 Primary key constraint f : TYPE1 7 7→ TYPE2 × ..× TYPEn

Rule 5 Constraint C Invariant I
Rule 6 Trigger E Event Evt

Example: Let assume that a database system consists of two tables

T 1,T 2 (both of them have two columns), two triggers G1,G2 and one

data constraints C . The Event-B specification of the system is partially

described in Figure 3.1.

3.3.2 Formalizing triggers

In this Section, we show in detail how to formalize database triggers.

Recall that, a trigger is denoted by 3-tuple g = 〈e, c, a〉, where e is type

of the trigger, c is condition in which the trigger happens, a is trigger’s

actions. As illustrated in Table 3.2, a trigger is translated to an Event-B

Chapter 3. Modeling and verifying database trigger systems 51

CONTEXT DB C

CONSTANTS

T1

T2

AXIOMS

axm1 : T1 = TYPE1× TYPE2

axm2 : T2 = TYPE3× TYPE4

END

MACHINE DB M

SEES DB C

VARIABLES

t1

t2

f1

f2

INVARIANTS

inv1 : t1 ∈ P (T1)

inv2 : t2 ∈ P (T2)

inv3 : f1 ∈ TYPE1 7 7→ TYPE2

inv3 : f2 ∈ TYPE3 7 7→ TYPE4

inv4 : I
EVENTS

Event G1 =̂

...

Event G2 =̂

...

END

Figure 3.1: Partial Event-B specification for a database system

event where conjunction of trigger’s type and its condition is the guard

of the event. The actions of the trigger are translated to the body part

of an Event-B event.

Table 3.2: Formalizing a trigger
IF (e)
ON (c) WHEN (e ∧ condition)

ACTION (a) THEN (a) END

In this chapter, we focus on modeling DML triggers, i.e. triggers are

fired when executing DML statements such as delete, insert , update.

We represent the type of such statements by an Event-B variable type,

for example: type = {update} indicating that this trigger is fired when

a update statement on a specific table is executed.

A trigger action is a block code and its syntax depends on database

management systems. This block code also contains SQL statements. In

Chapter 3. Modeling and verifying database trigger systems 52

order to show how our method works, we simplify the case by considering

that the Action part of a trigger contains a sequence of DML statements

without branch or loop statements. Hence, the action of a trigger consists

of a sequence of Insert , Update or Delete statement. In case of Update

and Delete triggers, the action statement contains conditions showing

which rows are affected. Therefore, we add these conditions to guard of

the translated event. More precisely, the mapping rules of each kind of

statements are presented as follows:

• Insert: This statement has the form: “Insert into T values (val1 ,..,

valn)” where val1,..valn are values of the new record. We encode

the input values as a parameter of the event, r , r ∈ T . More

specifically, the translated event has the form Evt= Any r Where

(r ∈ T) ∧ e ∧ c Then t := t ∪ r .

• Delete: This statement is generally written in the form: “ Delete

from T where column1 = some value”. It will delete the record

that has the first column’s value is equal to some value. We add

a parameter for the event representing the value some value. The

event is specified in detail as follows Evt= Any v where (v ∈
TYPE1) ∧ e ∧ c Then t := t − f (v).

• Update: The general syntax of this statement is “Update T set

column1 = value1 where column1 = some value”. This state-

ment will update a record where value of the first column is equal

to some value, similar to the case of delete statement, we encode

the input values as parameters of the event. The description of

the translated event is as follows: Evt= Any v1, v2 where v1 ∈
TYPE1 ∧ v2 ∈ TYPE2 ∧ e ∧ c Then t := {1 7→ v1, 2 7→ v2} ⊕ t .

The translation rules are summarized in Table 3.3.

Chapter 3. Modeling and verifying database trigger systems 53

Table 3.3: Encoding trigger actions
ANY r

INSERT INTO T WHEN (r ∈ T ∧ e ∧ c)

VALUES (value1,..,valuen) THEN T := T ∪ r

END
ANY v

DELETE FROM T WHEN (v ∈ TYPE1 ∧ e ∧ c)

WHERE 〈column1 = some value〉 THEN t := t − {v 7→ f (v)}

END
ANY v1, v2

UPDATE T WHEN v1 ∈ TYPE1 ∧ v2 ∈ TYPE2 ∧ e ∧ c

SET column2=value THEN t := {1 7→ v1, 2 7→ v2} ⊕ t

WHERE 〈column1 = v1〉 END

3.3.3 Verifying system properties

After the transformation, taking advantages of Event-B method and its

support tool, we are able to verify some properties of the database system

model as follows:

• Infinite loop: Since a trigger can fire the other triggers, hence it

probably leads to a infinite loop. This situation occurs when after

a sequence of events, state of the system does not change. There

are two ways to check this property of the system. The first one

is to check deadlock-freeness (DLKF) proof obligation of Event-B

which states that the disjunction of the event guards always hold

under the properties of the constant and the invariant. The deadlock

freedom rule is stated as I (v),P(c) ` G1(v) ∨ ... ∨ Gn(v) where v

is variable, I (v) denotes invariant, and Gi(v) presents guard of the

event. At the moment, the DLKF proof obligation is not generated

automatically by the Rodin tool yet. However, we can generate

it manually by adding a theorem saying the disjunction of guards.

In some cases, DLKF theorem can not be deduced from a set of

invariant I (v) and constant predicates. We will prove that there is

Chapter 3. Modeling and verifying database trigger systems 54

always at least one event executes at a time by showing that the

disjunction of the events’ guards are always true before and after

event execution including INITIALISATION event.

• Constraint preservation: Data constraints are rules that the system

should conform. In Section 3.3, data constraints are expressed by

invariants, and triggers are formalized by events. We need to prove

that a trigger does not break these rules by showing that they are

preserved before and after executing the event. It is formally defined

as I (v),G(t , v), S (t , v , v ′) ` I (v ′). This is also the INV proof obli-

gation of Event-B machine. Consequently, if INV PO is discharged

then the constraint preservation is satisfied.

3.4 A case study: Human resources management

application

In this section, we illustrate our proposed method on the extracted

scenario of a human resources management application. We first de-

scribe the scenario and its designed database, after that we translate the

database into an Event-B machine and verify the trigger execution.

3.4.1 Scenario description

Let assume that we have a database system of a human resource appli-

cation which includes two tables EMPLOYEES and BONUS structured

in Table 3.4.

The database system has a constraint: The bonus of an employee with

a level greater than 5 is at least 10.

Chapter 3. Modeling and verifying database trigger systems 55

Table 3.4: Table EMPLOYEES and BONUS
EMPLOYEES BONUS

E Id level E Id amount

0911 2 0911 2

0912 2 0912 2

0913 4 0913 4

It includes two triggers doing the following tasks:

Trigger 1. Whenever the level of employee is updated, his bonus is in-

creased by 10

Trigger 2. If the employee’s bonus is updated, then his level is increased

by 1.

These two triggers are rewritten in the format of PL/SQL as follows:

CREATE TRIGGER Trigger_1 BEFORE UPDATE

OF level ON employees

FOR EACH ROW

BEGIN

UPDATE bonus SET bonus.amount

=bonus.amount + 10

WHERE bonus.E_id = employees.E_id;

END IF;

END

CREATE TRIGGER Trigger_2 BEFORE UPDATE

OF amount ON bonus

FOR EACH ROW

BEGIN

UPDATE employees SET

employees.level = employees.level+1

WHERE bonus.E_id = employees.E_id;

END

3.4.2 Scenario modeling

We apply the method presented in Section 3.3 for modeling the system

as follows:

Chapter 3. Modeling and verifying database trigger systems 56

• Apply Rule 1: the database system is formalized by a context

Trigger C and a machine Trigger M , where Trigger C contains

a set TYPE representing all kinds of trigger.

• Apply Rule 2: two constant sets TBL EMPL,TBL BONUS rep-

resenting for two table employee and bonus . Each table has two

columns, hence each set is a Cartesian product of two sets of natu-

ral numbers (Figure 3.2). Variables bonus and empl are added into

the machine Trigger M .

• Apply Rule 3: two variables bonus rec and empl rec denotes a row

of the table bonus and employee respectively.

• Apply Rule 4: two bijective functions pk bonus , pk empl represent

primary key relationship of table bonus and employee respectively.

• Apply Rule 5: The system constraint is formalized by invariant

SYS CTR. The specification of the machine is illustrated partly in

Figure 3.3.

CONTEXT TRIGGER C

SETS

TYPES

TABLE NAMES

CONSTANTS

TBL EMPL

TBL BONUS

AXIOMS

axm1 : partition(TYPES, {insert}, {update}, {delete})
axm2 : TBL EMPL = N× N
axm3 : TBL BONUS = N× N
axm4 : partition(TABLE NAMES, {EMPL}, {BONUS})

END

Figure 3.2: A part of Event-B Context

Chapter 3. Modeling and verifying database trigger systems 57

MACHINE DB M

SEES TRIGGER C

VARIABLES

bonus

empl

pk bonus

pk empl

type

table

INVARIANTS

inv1 : bonus ∈ P (TBL BONUS)

inv2 : empl ∈ P (TBL EMPL)

inv3 : type ∈ TYPES

inv4 : pk bonus ∈ N 7 7→ N
inv5 : pk empl ∈ N 7 7→ N
SYS CTR : ∀ eid.eid ∈ dom(empl) ∧ pk empl(eid) > 5 ⇒

pk bonus(eid) > 5

INF LOOP : (type = update ∧ table = BONUS) ∨ (type = update ∧
table = EMPL)

END

Figure 3.3: A part of Event-B machine

Next, we formalize two triggers of the system as the method presented in

Section 3.3.2. In this example, the triggers containing update statement

are specified in Figure 3.4.

3.4.3 Checking properties

• Constraint preservation: Since the constraint property of the system

is modeled by the invariant

SYS CTR : ∀ eid .eid ∈ dom(empl) ∧ pk empl(eid) > 5⇒
pk bonus(eid) > 10.

We need to prove that the invariant is maintained before and after

events execution. The proof obligation of trigger1 is illustrated in

Table 3.5. Two events Trigger1 and Trigger2 of the machine DB M

Chapter 3. Modeling and verifying database trigger systems 58

Event trigger1 =̂

any
eid

when
grd1 : type = update

grd2 : table = EMPL

grd3 : eid ∈ dom(empl)
then

act1 : type := update

act3 : table := BONUS

act5 : bonus := {eid 7→ (pk bonus(eid) + 10)} ⊕ bonus

act5 : pk bonus(eid) := pk bonus(eid) + 10

end

Event trigger2 =̂

any
eid

when
grd1 : type = update

grd2 : table = BONUS

grd3 : pk bonus(eid) ≥ 10

then
act1 : type := update

act2 : table := EMPL

act3 : empl := {eid 7→ (pk empl(eid) + 1)} ⊕ empl

end

Figure 3.4: Encoding trigger

generate two proof obligations called trigger1/SYS CTR/INV, trig-

ger2/SYS CTR/INV respectively.

Table 3.5: INV PO of event trigger1.
∀ nid .nid ∈ dom(empl rec) ∧ pk empl(nid) > 5⇒ pk bonus(nid) > 10
emplid ∈ dom(empl)
type = update trigger1/
table = EMPL SYS CTR/
` INV
∀ nid .nid ∈ dom(empl rec) ∧ pk empl(nid) > 5
⇒ (pk bonus ⊕ {emplid 7→ pk bonus(emplid) + 10})(nid) > 10

These proof obligations are also automatically discharged in the

Rodin tool. Hence, the system constraint is satisfied by two triggers.

• Infinite loop: As we proposed in Section 3.3.3, the invariant INF LOOP

Chapter 3. Modeling and verifying database trigger systems 59

which is the disjunction of the event’ guards id added to the target

machine. If we show that this invariant is preserved by machine

DB M , then the execution of two triggers leads to a infinite loop.

The proof clause of the event trigger1 is presented in Table 3.6.

Table 3.6: Infinite loop proof obligation of event trigger1
∀ nid .(nid ∈ dom(empl) ∧
type = update ∧ table = BONUS ∧
pk bonus(nid) > 10) ∨ (type = update ∧ table = EMPL)) ∧
emplid ∈ dom(bonus)
table = BONUS ∧ pk bonus(emplid) > 10 trigger1
` /INF LOOP
∀ nid .(nid ∈ dom({emplid 7→ pk empl(emplid) + 1} ⊕ empl) ∧ /INV
update = update ∧ EMPL = BONUS ∧
pk bonus(nid) > 10) ∨
(update = update ∧ EMPL = EMPL)

Two INV proof obligations are also generated and discharged au-

tomatically in the Rodin, i.e. the invariant clause is also proved to

be preserved through events. Hence, two triggers lead to a infinite

loop.

3.5 Support tool: Trigger2B

In this section, we present a tool named Trigger2B which supports for

automatic translation from a database including triggers to an Event-B

model. First, we present the architecture of the tool. After that, we

shows how the main components of the tool are implemented.

3.5.1 Architecture

Following the method presented in Section 3.3, we implement a tool

called Trigger2B to support designing and modeling a database system

Chapter 3. Modeling and verifying database trigger systems 60

including trigger with Event-B. This tool can generate multiples XML-

based format output in order to use in verification phase with supporting

tools of Event-B such as Rodin, AterlierB. The architecture of this tool

is illustrated in Figure 3.5.

Figure 3.5: Architecture of Trigger2B tool

Main components of Trigger2B tool work as follows:

• DBAdapter: Manipulates relational database systems to get infor-

mation about the database which will be modeled such as existing

tables and triggers.

• Trigger Builder: Allows users to create new triggers based on the

chosen database.

• SQLParser: Parses the trigger body to extract necessary elements,

e.g. type and table names of SQL statements, for modeling.

• Modeling Component: Performs some algorithms to build a cor-

responding Event-B model.

• Serialization: Serialize the translated Event-B model to XML-

based files such as Rodin Event-B components files.

3.5.2 Implementation

The heart of this tool is the modeling component which includes al-

gorithms following the proposed translation rules to translate database

concepts to Event-B constructs. The input of this component is the out

Chapter 3. Modeling and verifying database trigger systems 61

out of SQLParser component which currently uses ANLTR [52] frame-

work to parse sql statements into a syntax tree. The parsed tree of

general triggers is partially illustrated in Figure 3.6.

create trigger

trigger body

〈DMLStatement〉

expr=column namequalified table〈action〉

trigger event

table name

name

column name

name

〈action〉

trigger name

name

Figure 3.6: A partial parsed tree syntax of a general trigger

We propose an algorithm following our proposed translation rules to

transform the parsed tree to an Event-B model. The algorithm is illus-

trated in Algorithm 1.

Alg. 1 TriggerModeling(t). An algorithm for translating a parsed tree t to an Event-B model

Input: Parsed syntax tree(t)
Output: Event-B machine (M)

1 begin
2 node = root(t)
3 while (isVisited(node)=false)
4 if node.type = create trigger then
5 e=createNewEvent(M)
6 if node.type = trigger name then
7 e.name = node.name
8 elseif node.type = trigger event
9 for child in nodes.childs
10 if node.type = action then
11 addGuard(e,type=node.value)
12 if node.type = tabletable name then
13 addGuard(e,table=node.child.value)
14 elseif node.type = trigger body
15 addAction(e,getExp(node.childs))
16 end
17 visit next(node)
18 end

We define a template for using the supporting RODIN API to serialize

to Event-B components of the RODIN platform. Figure 3.7(a) shows the

Chapter 3. Modeling and verifying database trigger systems 62

RODIN output files which are generated automatically in the folder res

by the tool after modeling the scenario described in Section 3.4.1. The

output contains full description of two triggers (see Figure 3.7(b)). One

thing is missing is the invariant representing the data constraint because

we have not defined it in the input SQL file yet. Therefore, we need to

add this invariant clause manually to obtain the complete model.

(a) Rodin project generated (b) Output project in RODIN platform

Figure 3.7: The modeling result of the scenario generated by Trigger2B

3.6 Chapter conclusions

Database active rules or triggers are one of the most popular application

of event-driven architecture in database systems. Modeling and verifi-

cation of these systems are interesting topic for many research group.

Most of their work focused on checking termination property of the trig-

ger execution. While few of them proposed methods for analysing data

constraint preservation.

In this chapter, we propose a new method to formalize and verify a

database system including triggers with Event-B. In comparison with

other existing methods, using Event-B for modeling such kind of systems

is well-suited, because ECA rules which are used for describing behaviour

Chapter 3. Modeling and verifying database trigger systems 63

of trigger systems are matched to Event-B events. The method proposes

a set of translation rules to translate database elements to Event-B con-

structs. One advantage of the method is that it allows us to prove data

constraint preservation properties and detect infinite loops by means of

Event-B proof obligations. Another contribution of this chapter is the

provided tool which partly supports the automatic translation. It helps

to reduce the effort and cost of modeling process. It makes sense because

we can bring the formal verification to software development. The initial

research result was published in [53] and the extended one with tool is

in submission.

Besides the advantages, this method still needs to be improved to model

and verify a more complex database systems with more complicated

triggers. The current implementation is also limited with only SQLite

trigger syntax.

In the next chapter, we will continue to study how to use Event-B and

its refinement mechanism to model and verify another important appli-

cation of event-driven systems, e.g., context-aware systems, which also

uses ECA based rules to describe the behavior of the system.

Chapter 4

Modeling and verifying

context-aware systems

4.1 Introduction

Context awareness is a computing paradigm that makes applications

responsive and adaptive with their environment. Context-aware sys-

tems potentially determine their behavior and reduces human-computer

interaction by providing knowledge context information of their user’s

environment. Context awareness of an application relates to adapta-

tion, responsiveness, sensitiveness of the application to changes of the

context [42]. In a narrow view, a context-aware system is somehow con-

sidered as an event-driven system, i.e., it receives events emitted by con-

text changes and responds to these changes with the providing context

knowledge.

Context-aware systems often use context rules to adjust the behavior if

the circumstances are changed. It is similar to the structure of database

64

Chapter 4. Modeling and verifying context-aware systems 65

triggers in Chapter 3, these rules can have the form of ECA rules. Fur-

thermore, the behavior of context-ware systems is often complex and un-

certain. That could be unacceptable especially when context-aware sys-

tems are implemented as safety-critical systems. The results up to date

have worked on modeling context awareness with various approaches

such as object role modeling, ontology based modeling, logic based mod-

eling [42, 54]. They also have proposed several frameworks for context

modeling. However, to the best of our knowledge, there does not exist

an approach that models context awareness in several aspects such as

events of environments, context rules and uncertainty. Furthermore, the

resulted model can be formally verified to ensure the correctness of the

system.

In this chapter, we propose to use Event-B as a formal method to model

and verify context-aware systems. The contributions of our proposal are:

(1) Natural representation of context-aware systems by Event-B con-

cepts. A set of translation rules are proposed to define context awareness

components formally. It is a refinement-based method allowing to con-

struct the system gradually (2) After formalization, significant properties

are verified via proof obligations of refinement mechanism automatically

(or interactively) without any intermediate transformation.

The rest of the chapter is structured as follows: Section 4.2 summarizes

some related work. In Section 4.3, we introduce a novel method to model

a context-aware system by formalizing its components using Event-B

notations. Section 4.4 presents a scenario of an Adaptive Cruise Control

system in order to demonstrate our method. We conclude this chapter

in Section 4.5.

Chapter 4. Modeling and verifying context-aware systems 66

4.2 Related work

Many papers have been proposed for modeling and verifying context-

aware systems with various approaches. Key-value data structure [40,

55] has been used in early works as the simplest method for modeling

context awareness. This method exposes many problems since it lacks

of interoperability, representation and reasoning mechanism.

Most research efforts that are based on mark-up scheme model have de-

fined and extended markup languages. Henricksen et al. [56] proposed

to represent contextual data by Comprehensive Structure Context Pro-

files (CSCP). Indulska et al. [57] extended CC/CP model to define a

set of CC/PP components and attributes to express a various types of

context information and context relationships.

Some researchers following the graphical model approach to model con-

textual data. Mostefaoui [58] presented a three-layered data model for

context. Benselim and Seridi-Bouchelaghem [59] recently presented an

UML extension for representing and modeling context by creating some

stereotypes that are described by several tagged values and some con-

straints.

Almost all ontology-based approaches have used high-level ontologies to

formalize context information and models. Shehzad et al. [60] intro-

duced a formal modeling method in context aware systems using OWL.

Ejigu et al. [61] also proposed ontology based reusable context model

that providing structure for contexts, rules and their semantics. The

problem with these two pieces of work is that there was no verification

mechanism presented.

Besides, Kjaergaard and Bunde-Pedersen [62] proposed a CONAWA cal-

culus that provides mechanism for modeling and interwovenning sets of

Chapter 4. Modeling and verifying context-aware systems 67

context-information. However, this approach has some limitations such

as probabilistic context information modeling and verification of the sys-

tem is not discussed yet.

More recently, Tran et al. [63] introduced a ROAD4Context framework

which is based on Role-Oriented Adaptive Design (ROAD) [64] to model

context-aware systems. However, in order to verify the system, it takes

more intermediate steps to translate a ROAD4Context model to a Petri

net model and then use SPIN to check the system’s behaviors. Further-

more, the transformation rules are not presented generally.

In comparison to these works, our method is different as we use Event-B

as a modeling method. The advantages of our method are that a context-

aware system can be modeled naturally by Event-B notations because

the ECA form of context rules is mapped directly to an event. The

Event-B refinement allows to develop a context-aware system gradually

and ensures the correctness in each refinement stage. After the model-

ing, the verification process does not require any more translation step.

Context constraints are proved mathematically by proving proof obliga-

tions which are automatically generated and proved in the supporting

tool Rodin.

4.3 Formalizing context awareness

In this section, we consider a simplified context-aware system and repre-

sent its components in set theory. Base upon these definitions, we then

use Event-B notations to formalize a context-aware system.

Chapter 4. Modeling and verifying context-aware systems 68

4.3.1 Set representation of context awareness

Firstly, we introduce a simple structure of context-aware systems con-

sisting of five components depicted in Figure 4.1. A basic operation of

the system is that if there is any change from the environment that can

be detected using sensors, it sends events to the core context-aware ser-

vice. This component then uses both context data entities and context

rules to reason about the situation. Finally, it reacts to environment via

its behaviors. During that process, the system still has to preserve the

constraints.

Context data

Environment Context−aware service
events

react

Context constraints

Context rules

Figure 4.1: A simple context-aware system

Definition 4.1 (Context-aware system). A context-aware system is de-

noted by a 4-tuple, CaS = 〈E ,R,CD ,CC 〉, where E and R represent

for the environment events and context rules respectively, CD denotes

context data entities and its relations and CC states the system’s con-

straints.

Definition 4.2 (Environments). Environment is a set of events stated

by a set: E = Ue , where e is an event that is sent to context aware core

service.

Chapter 4. Modeling and verifying context-aware systems 69

We go further for definitions of context rules and context entities. Let us

assume that rules of context-awareness are in the form of ECA (event-

condition-action), i.e. if an event e occurs in condition C then do action

A. Hence, we present definitions for each element r , r ∈ R as follows

Definition 4.3 (Context rules). A context rule is used for reasoning

and describing the behavior of context-aware systems. It specifies the

response actions when a specific event is raised at any condition. Thus,

the context rule is denoted by 3-tuple r = 〈e, a, c〉 where e, c are event

and condition of the rule respectively, while a states the action of the

rule. Note that, the event e should be included in the event set E .

Context data consists of context entities and their relations. This com-

ponent takes a role as a data storage of the system.

Definition 4.4 (Context data). Context data is denoted by a 2-tuple

CD = 〈E ,R〉, where E is a set of context entities and R is a set of

functions mapping between sets of context entities.

4.3.2 Modeling context-aware system

Event-B is based on classical set theory, we thus use it to model context-

aware systems according to definitions given in Section 4.3.1. We present

transformation rules between a context-aware system and an Event-B

model as follows:

• Rule 1: Context data is presented by a set of context entities and

their relations. The context entities be treated as a collection of

sets and constants. Recall that, an Event-B context consists of

set, constant and axioms clauses. The axioms clauses list various

predicates of constants in the first order logic formulas. Hence, we

can formalize directly a context data by an Event-B context.

Chapter 4. Modeling and verifying context-aware systems 70

• Rule 2: Each event that is emitted by the environment component

is represented by an Event-B event. For example: A context-aware

system uses a sensor for detecting Wind speed. The sensor regularly

detects the environment and this event is sent to the core service.

Then, it is then formalized by an event: detectWind.

• Rule 3: Since context rule structure has the form of ECA, each rule

r = 〈e, c, a〉 is mapping to an Event-B event. Where e is event

that the system senses or received from its environment, c is the

additional conditions for reasoning. More precisely, conjunction of

e and c are guards of Event-B event while a is mapped to the body

of the event (see Table 4.1). All these events are included in either

Event-B abstract machines or a refined ones.

Table 4.1: Modeling a context rule by an Event-B Event
IF (e)
ON (c) WHEN (e ∧ c)

ACTION (a) THEN (a) END

• Rule 4: A constraint of the context-aware system is a desired prop-

erty that the system should maintain. That standpoint matches

to the meaning of Event-B invariants, we thus model Context con-

straints by a set of invariants.

We summarize transformation rules used for modeling in Table 4.2

Table 4.2: Transformation between context-aware systems and Event-B
Context-aware concepts Event-B notations

Rule 1 Context data CD Sets, Constants
Rule 2 Context rules r = 〈e, c, a〉 Events
Rule 3 Environments triggers E Events
Rule 4 Context constraints CC Invariants

Chapter 4. Modeling and verifying context-aware systems 71

4.3.3 Incremental modeling using refinement

In fact, the development of context-aware systems often starts from the

scratch requirements, then it is built gradually when we have new re-

quirements about context entities and reasoning. For example, more

sensors are attached in the system to get various kind of context data.

The system also has more context rules to handle with these data. The

updated system still has to satisfy context constraints which has been

established. Therefore, it requires to have a suitable modeling method

for incremental development. As we have described in Section 4.3.2, a

context-aware system is translated to an abstract Event-B model. It

is apparently suitable for modeling the initial stage of a context-aware

system. In this subsection, we answer the question how our approach

fits to incremental development of such systems.

Figure 4.2: Incremental modeling using refinement

The refinement mechanism of Event-B makes it possible to model context-

aware systems incrementally. We already know that Event-B provides

both superposition refinement and vertical refinement. In the former,

Chapter 4. Modeling and verifying context-aware systems 72

the abstract variables are retained in the concrete machine, with possi-

bly some additional variables, hence it is suitable for modeling a context-

aware system which is often extended by adding new sensors. The pro-

posed incremental modeling method is illustrated in Figure 4.2.

• Static part: For example, when a new sensor is added to the system,

we may have to deal with new context data types. The context data

can be an extension of the old one. Applying Rule 1, we formalize it

as a new Event-B context which extends the ones in abstract model.

• Dynamic part: We begin with abstract machines to model the gen-

eral behavior of the very beginning system, after that we refine these

machines by concrete ones to represent new requirements of the sys-

tems. For instance, adding new sensors usually generate new appro-

priate events. Hence, the system also needs more rule to react to

these events. In the refined machines, new added variables can refer

to new context data elements. The events of a new refined machine

can refine the abstract ones to describe the system more precisely.

With the dynamic part, we need to prove that a new model in the

increment step needs to satisfy the context constraints including

ones defined in the early stages. That proof can be achieved by us-

ing INV proof obligations which states that invariant preservation

PO can be checked at any refinement. According to Rule 4 in Sec-

tion 4.3.2, all constraints are represented by Invariants, therefore a

new constructed context-aware system at any refined step preserves

all constraints of the initial step.

4.4 A case study: Adaptive Cruise Control system

We demonstrate our approach by modeling a scenario of an Adaptive

Cruise Control (ACC) system. First, we introduce the scenario, then

Chapter 4. Modeling and verifying context-aware systems 73

we apply the modeling method presented in Section 4.3.2 and then we

verify context constraint preservation properties of the system.

4.4.1 Initial description

ACC controls car’s speed is based on the driving conditions which are

enhanced with a context-aware feature such as target detection. The

ACC system use a sensor to detect target in front of the car. The car

has a maximum speed which is initially set to a value. If the car does

not detect a target then ACC increase the speed, other wise decreases

the speed with constant amount. If the car is stopped and there is no

target detected then it is resumed with initial speed.

The ACC must conform to a context constraint such that the speed is

always in safe range, i.e., the speed is less or equal to the maximum

speed.

4.4.2 Modeling ACC system

In this scenario, there are three sensors, following the approach presented

in Section 4.3, we specify the initial system with one abstract machine

and one context, namely ACC M 0 and Target .

• Applying Rule 1, context Target represents context data received

from the target detection sensor. More precisely, the information

sent by the sensor let us know whether there is an object which is

currently in front of the car. We thus formalize the context entities

as a set TARGET DETECTION which is equivalent to BOOL set.

• The sensor will periodically send context data to the system by

emitting events. We need to check if context data contains the

Chapter 4. Modeling and verifying context-aware systems 74

information of obstacle objects. Hence, we specify two Event-B

events TargetDetected ,TargetUndetected correspondingly.

• Context rules are used for specifying the system behavior which

depends on the context. We attract three rules from the initial de-

scription and translate them to three corresponding events following

Rule 3.

• Applying Rule 4, the context constraint is translated to invariant

CXT CSTR.

Moreover, a variable speed in the model specifies the speed of the car.

The Event-B specification of the ACC system is partially illustrated in

Figure 4.3.

Strengthen guards: With the initial description, the generated INV

POs of the translated Event-B model are failed to prove. More precisely,

with event TargetDetected , PO TargetDetected/CXT CSTR/INV is gen-

erated as follows:

speed ≤ MAX SPEED ∧ target = FALSE ` speed + INC SPEED ≤ MAX SPEED (4.1)

Sequent 4.1 is failed if MAX SPEED+INC SPEED < speed ≤ MAX SPEED

before event execution.

To make the model more precise, we strengthen the context rules by

adding more conditions. i.e. the event guards have more clauses (Fig-

ure 4.4)

Chapter 4. Modeling and verifying context-aware systems 75

CONTEXT Target

CONSTANTS

TARGET DETECTION

MAX SPEED

INC

AXIOMS

axm1 : TARGET DETECTION =
BOOL

axm2 : MAX SPEED ∈ N
axm3 : INC < MAX SPEED

axm4 : INC ∈ N
END

MACHINE ACC M0

SEES Target

VARIABLES

speed

target det

INVARIANTS

inv1 : speed ∈ N
inv2 : target det ∈ TARGET DETECTION

inv3 : speed ≤ MAX SPEED

EVENTS

Initialisation

begin
act1 : speed := MAX SPEED

end

Event TargetDetected =̂

when
grd1 : target det = TRUE

then
act1 : speed := speed− INC

end

Event TargetUndetected =̂

when
grd1 : target det = FALSE

then
act1 : speed := speed + INC

end

END

Figure 4.3: Abstract Event-B model for ACC system

4.4.3 Refinement: Adding weather and road sensors

At this stage, the system has more sensors to be aware more precisely of

the current context situations. Weather and road sensors are attached to

the system. Similarly to target detection sensor, they send the context

data periodically to the system. Context rules of the system are also

extended for reacting to new added sensors as follows: “When a car

travels in a raining condition or sharp bend, ACC reduces car’s speed”.

With new sensors, the system need to fulfil the constraint such as “The

Chapter 4. Modeling and verifying context-aware systems 76

EVENTS

Event TargetDetected =̂

when
grd1 : target det = TRUE

grd2 : speed > INC

then
act1 : speed := speed− INC

end

Event TargetUndetected =̂

when
grd1 : target det = FALSE

grd2 : speed < MAX SPEED− INC

then
act1 : speed := speed + INC

end

END

Figure 4.4: Events with strengthened guards

speed can not be equal to maximal speed if it is raining or the road is

sharp”.

Refined model: Following the method presented in Section 4.3.3, con-

text Weather Road extending context Target represents context data

of two new sensors. We use two constant sets RAINING and SHARP

to represent context data from sensors. Machine ACC M 1 is the con-

crete machine specifying the behavior of the system updated with new

requirements.

Since two new rules are appended to the requirements, two correspond-

ing events are added for this machine. The first one representing a new

added rule is not extended. This event RainSharp describes the behavior

of the system when sensors send data indicating that it is raining or the

road is sharp. While the second one TargetUndetected refines event of

the abstract model. The context constraint is formalized as an invari-

ant cxt ct . The Event-B specification of the refined model is partially

illustrated in Figure 4.5.

Chapter 4. Modeling and verifying context-aware systems 77

CONTEXT Weather Road

EXTENDS Target

CONSTANTS

RAINING

SHARP

AXIOMS

axm1 : RAINING = BOOL

axm2 : SHARP = BOOL

END

MACHINE ACC M1

REFINES ACC M0

SEES Weather Road

VARIABLES

isRain

speed

target det

isSharp

INVARIANTS

inv1 : isRain ∈ RAINING

cxt ct : isRain = TRUE ∨ isSharp =
TRUE⇒ speed < MAX SPEED

inv3 : isSharp ∈ SHARP

EVENTS

Initialisation

begin
skip

end

Event TargetUndetected =̂

extends TargetUndetected

when
grd1 : target det = FALSE
grd2 : speed < MAX SPEED − INC
grd3 : isRain = FALSE

grd4 : isSharp = FALSE

then
act1 : speed := speed+ INC

end

Event RainSharp =̂

when
grd1 : isRain = TRUE ∨ isSharp =

TRUE

then
act1 : speed := speed− INC

end

END

Figure 4.5: Refined Event-B model for ACC system

Chapter 4. Modeling and verifying context-aware systems 78

4.4.4 Verifying the system’s properties

The system should always satisfy context constraint preservation prop-

erties. It means that the context constraint is preserved before and

after using the context rules to adapt context changes. With proposed

method, context constraints are translated to invariant clauses. Conse-

quently, we prove the system’s correctness by proving proof obligations

of such invariants.

Table 4.3: Proof of context constraint preservation
target det = TRUE ⇒ speed < MAX SPEED
target det = TRUE
speed > INC TargetDetected/ctx ct1/INV
`
target det = TRUE ⇒ speed − INC < MAX SPEED

The proof obligations (PO) for these invariants of both abstract and

refined machines as follows:

• Machine ACC M 0: “TargetDetected/ctx ct1/INV ” (Figure 4.3) and

“TargetUndetected/ctx ct1/INV ”

• Machine ACC M 1: “TargetUndetected/ctx ct/INV ” and “Rain-

Sharp/ctx ct/INV ”

These POs are generated and proved automatically with the Rodin tool

as illustrated in Figure 4.6. Hence, the ACC system always satisfies

predefined context rules.

4.5 Chapter conclusions

The use of context-awareness plays an important role in reactive and in-

teractive systems. Context-aware systems which follows the event-driven

Chapter 4. Modeling and verifying context-aware systems 79

Figure 4.6: Checking properties in Rodin

architecture are applied in many real-world systems such as mobile, em-

bedded systems, etc..The behavior of such systems can be expressed

by context-rules which has the form of ECA. Modeling and verifying

context-aware systems are difficult tasks due to their complex behav-

ior. In this chapter, we introduce a new method to model and verify

such systems. The advantages of our method over the existing methods

and approaches are natural representation of context-aware concepts to

model and the use of invariant preservation proof obligations generated

by refinement mechanism in Event-B to verify the correctness of the

system. Refinement of Event-B machines makes our proposed method

suitable for incremental modeling of such systems. The content of this

chapter was published in [65, 66].

We, however, just consider a simple case of context awareness in this

chapter. Context data is treated as boolean sets. Since, we use invari-

ant clauses to specify desired properties, it is limited to safety properties.

The other properties such as liveness can not be expressed directly by in-

variants. Furthermore, one of important characteristic of context-aware

systems is uncertain. In this chapter, however, we just consider that

the system are described by precise requirements with exact numerical

Chapter 4. Modeling and verifying context-aware systems 80

data (for example: we subtract a constant integer value from the current

speed, context data values are either TRUE or FALSE).

In Chapter 3 and Chapter 4, we propose new methods for modeling and

verifying two particular types of event-driven systems. In both systems,

the behavior can be represented by ECA structure and is described by

precise requirements. In the next chapter, we will consider the case that

a system which is described by uncertain or vague requirements. We

will propose a novel modeling and verification method for such systems

using Event-B.

Chapter 5

Modeling and verifying imprecise

system requirements

5.1 Introduction

Formal methods are mathematical techniques for describing system model

properties. Such methods providing frameworks to specify and verify the

correctness of systems as well as event-driven ones requiring precise de-

scription. In Chapter 4, we model context-aware systems where they

are described by precise descriptions. However, we often are faced with

imprecise descriptions where ambiguous, vague or uncertain terms such

as “very cold”, “far”, or “low important”, are used because the stake-

holders usually do not care much about describing the system precisely.

Therefore, frameworks which are formal enough to be used for analysing

as well as representing imprecise requirements are desirable.

The method with the Fuzzy set, proposed by Zadeh [28], is one such

formal framework, where the Fuzzy If-Then rules are sometimes em-

ployed to represent imprecise system requirements. Informal statements

81

Chapter 5. Modeling and verifying imprecise system requirements 82

expressed in natural languages such as “very far” or “too close” can be

well encoded in the Fuzzy set, which enables further analysis on the spec-

ifications. It involves continuous numerical reasoning since the Fuzzy set

is essentially based on the idea of representing the fuzziness degree in

terms of Real numbers between 0 and 1.

In general, system requirements include functional specifications, whose

various properties are checked at this same level of abstractions before

starting further development steps. The requirements written in terms

of Fuzzy If-Then rules can be an adequate representation, but require

further techniques for checking properties formally, which may elucidate

perspectives different from those for detecting and resolving conflicts.

The Fuzzy If-then rules are translated into other formal frameworks such

as PetriNet [67, 68] or Z notation [69, 70].

Common properties of software systems as well as event-driven systems

are safety and liveness properties. While safety properties guaranty that

bad things do not happen, liveness properties (e.g. termination, eventu-

ality, progress, persistence) assure that the system will reach a defined

good state. In this chapter, we present a new refinement-based method

to model and verify both safety and eventuality properties of the system.

In particular, we apply the proof methods proposed in [71] to verify the

eventuality properties. As far as we know, this thesis reports the first

concrete results of formal checking of such properties for imprecise sys-

tem requirements.

This chapter employs Event-B refinement to model event-driven systems

which are described by a set of Fuzzy If-Then rules. The contributions

of this chapter are as follows: (1) providing a set of translation rules

from the Fuzzy If-then rules to Event-B language constructs (2) mak-

ing use of Event-B refinement to formalize timed Fuzzy If-Then rules.

Chapter 5. Modeling and verifying imprecise system requirements 83

(3) providing a set of translation rules to formalize eventualities, which

makes use of the refinement modeling approach that Event-B supports,

(4) demonstrating how both safety and eventuality properties of a set of

the Fuzzy If-Then rules are verified with RODIN/Event-B.

The rest of this chapter is structured as follows. Section 5.2 reviews

related work. In Section 5.3, we present representation of fuzzy terms

in classical sets. Using such representation, we first introduce a set of

translation rules to model fuzzy If-Then rules. We then present timed

Fuzzy If-Then rules to formalize timed systems. We then show how to

model safety properties and eventuality properties of imprecise require-

ments in Event-B. Section 5.5 presents an example of Crane controller

to illustrate the proposed method in detail. Conclusions are given in

Section 5.6.

5.2 Related work

Several approaches have been addressed to modeling and verification

of fuzzy requirements using formal methods, however, these are differ-

ent from our method. C.Matthews and Paul A. Swatman introduced a

fuzzy logic toolkit for the formal specification language Z [69, 70]. This

toolkit defines the operators, measure and modifiers necessary for the

manipulation of fuzzy sets and relations. A series of laws are provided

that establish an isomorphism between conventional Z and the extended

notation when applied to boolean sets and relation. It can be modeled

as a partial rather than total function. The focus is on the specifications

of the rule base and the operations necessary for fuzzy inferences. How-

ever, they do not incorporate the notion of refinements. It just provides

definition and manipulation of fuzzy sets and relations by using Z.

Chapter 5. Modeling and verifying imprecise system requirements 84

V.Pavliska and J.Knybel [72, 73] introduced modified Petri Nets as a

tool for fuzzy modeling. Basic concepts and relations between Fuzzy

Petri Nets and Fuzzy IF-THEN rules are described and an algorithm for

decomposition of fuzzy Petri net into set of linguistic descriptions are

presented and its implementation mentioned. Their work just showed

how to model the system and does not mention how to verify the system

properties.

B.Intrigila et al. [67] has introduced a verification method of fuzzy con-

trol systems using model-checking technique with Murphi verifier. The

authors eased the modeling phase by using finite precision real numbers

and external C functions.

S.J.H.Yang et al. [68] proposed to use high-level Petri Net in order to

verify fuzzy rule-based systems. This method can detect the system’s

errors such as redundancy, inconsistency, incompleteness, and circularity

but it has to take extra step to normalize the rules into Horn clauses

before transforming these rules to and use incidence matrix as fixed-

value matrix for degree membership.

J.Lee et al. [74] extended object oriented modeling by using fuzzy objects

to capture and analyze imprecise requirements. Even this approach is

straight to show how the fuzzy classes can be mapped into XML schemas

and XML documents [75], we can not verify these requirements with the

fuzzy object model.

M.Goncalves et al. [76] presented an approach to a database application

method which translates the formal specifications to implementations in

the structured query language (SQL) enhanced with fuzzy logic (SQLf).

This method allows to extend the tuple calculus in order to express fuzzy

queries.

Chapter 5. Modeling and verifying imprecise system requirements 85

5.3 Modeling fuzzy requirements

In this section, we first present an approach to representing fuzzy terms

by traditional set theory. Based upon these representation, we introduce

translation rules from set of Fuzzy IF-Then rules to Event-B. Then we

make use of Event-B refinement to model timed systems.

5.3.1 Representation of fuzzy terms in classical sets

As stated in Chapter 2, we may use fuzzy sets and fuzzy logic to formal-

ize imprecise system requirements. There are several different classes of

hedge operations, each represented by a linguistic construct. There are

hedges that intensify the characteristic of a fuzzy set (very, extremely),

dilute the membership curve (somewhat, rather, quite), form the com-

plement of a set (not), and those that approximate a fuzzy region or

convert a scalar to a fuzzy set (about, near, close to, approximately).

Hedges play the same role in fuzzy production rules that adjectives and

adverbs play in English sentences. The application of a hedge changes

the behavior of the fuzzy sets, in the same way that adjectives change

the meaning and intention of an English sentence. Fuzzy logic usually

uses IF-THEN rules, or equivalent constructs, such as fuzzy associative

matrices. Rules are usually expressed in the form: IF 〈variable〉 be

〈property〉 THEN 〈action〉.

Example: IF costs are very high THEN margins are small.

We will show that imprecise requirements using fuzzy sets and fuzzy rules

can be represented by classical sets. First, the general form FR, also

called well-defined form, of a imprecise requirement can be represented

as:

Chapter 5. Modeling and verifying imprecise system requirements 86

IF x is δY THEN m is γP

Recall that, in classical set theory, sets can be combined in a number

of different ways to produce another set such as Union, Intersection,

Difference, Cartesian product. Below we recall some definitions related

to Cartesian product operation, the definition of an ordered pair and

Cartesian product of two sets using it. Then the Cartesian product of

multiple sets is also defined using the concept of n-tuple.

Definition 5.1 (ordered pair). An ordered pair is a pair of objects with

an order associated with them. If objects are represented by x and y ,

then we write the ordered pair as 〈x , y〉.

Definition 5.2 (Cartesian product). The set of all ordered pairs 〈a, b〉
where a is an element of A and b is an element of B, is called the Cartesian

product of A and B and is denoted by A× B .

Example 1: Let A = {1, 2, 3} and B = {a, b}.

Then A× B = {〈1, a〉 , 〈1, b〉 , 〈2, a〉 , 〈2, b〉 , 〈3, a〉 , 〈3, b〉}.

The concept of Cartesian product can be extended to that of more than

two sets. First we are going to define the concept of ordered n-tuple.

Definition 5.3 (ordered n-tuple). An ordered n-tuple is a set of n objects

with an order associated with them (rigorous definition to be filled in).

If n objects are represented by x1, x2, ..., xn , then we write the ordered

n-tuple as 〈x1, x2, ..., xn〉.

Definition 5.4 (Cartesian product). Let A1, ..., An be n sets. Then the

set of all ordered n-tuples 〈x1, ..., xn〉 where xi ∈ Ai , ∀ i = 1, n, is called

the Cartesian product of A1, ...,An , and is denoted by A1 × ...× An .

Corollary 5.5. A collection of well-defined fuzzy requirements can be

specified by classical sets.

Chapter 5. Modeling and verifying imprecise system requirements 87

Proof. Suppose that, fuzzy requirements of a system are specified by

FR = {FRi}, FRi = {xi ,mi , δi , γi ,Yi ,Pi}, i = 1, n. Clearly that, xi ,mi

are considered as variables in the specification, Pi is obviously described

by a set of values. We consider if δiYi can be specified by a classical

set in which δi is a hedge, Yi is a generator of a fuzzy clause. As FR

is a finite set of rules so hedges and generators in the system can be

established two different finite sets, δ and Y , respectively. According

to the Definition 5.2, δiYi and γiPi are a membership of the Cartesian

product of two sets δ × Y and γ × P respectively. Consequently, every

elements in FR can be specified by classical sets. �

5.3.2 Modeling discrete states

We start to model the discrete behavior of the system which is described

by imprecise requirements. Then, we inherits the approach introduced

by J.Abrial et al. [77] to model the continuous behavior.

We will explain how imprecise requirements in Fuzzy If-then rules are

modeled using discrete states. Suppose that, a system is specified by a

collection of requirements FRi :

if xi is δiYi then mi is γiPi

According to the Corollary 5.5, the above requirements can be repre-

sented by classical sets. Since Event-B is a language based on the

classical theory set, we propose an approach to modeling the system

with Event-B method. A system consisting a collection of requirements

FRi , i = 1, n is modeled by an Event-B model FRB = 〈FR C ,FR M 〉,
where FR C and FR M are Event-B context and machine respectively.

Chapter 5. Modeling and verifying imprecise system requirements 88

We propose below partial transformation rules to map fuzzy require-

ments to Event-B’s elements. The important principle of the transfor-

mation process is that we can preserve the structure and represent all

fuzzy requirements using the Event-B notation. Moreover, safety prop-

erties must be preserved by actions of the system.

Transformation rules:

• Rule 1. All hedges δi and γi , generators Yi and values Pi in the

collection of requirements are translated to three sets δ, γ, Y , and

P respectively. They are stated in the SETS clause of FR C .

• Rule 2. Linguistic variables xi ,mi in each FRi are mapped to vari-

ables xi ,mi of the Event-B machine FR M .

• Rule 3. Each variable xi is described as a membership of a Cartesian

product of two sets δ × Y , mi is described as a membership of a

Cartesian product of two sets γ × P (Corollary 5.5).

• Rule 4. Each requirement FRi is modeled by an event evi in Event-B

machine FR M .

Note that, these are only partial transformation rules, we need to give

more additional parts to obtain the completed Event-B specification

(Figure 5.1).

5.3.3 Modeling continuous behavior

Currently we use Fuzzy If-Then rules just to formalize time independent

systems. In fact, most of real world systems depend on time. In this

section, we extend the method proposed in Section 5.3.2 with timed

fuzzy if-then rules. We also make use of Event-B refinement to model

Chapter 5. Modeling and verifying imprecise system requirements 89

CONTEXT FR C

SETS

δ

γ

P

Y

END

MACHINE FR M 0

SEES FR C

VARIABLES

x i

m i

INVARIANTS

inv1 : xi ∈ P (δ × Y)

inv2 : mi ∈ P (γ × P)

inv3 : I
EVENTS

Event FRi =̂

when
grd1 : xi = {δi 7→ Yi}

then
act1 : mi := {γi 7→ Pi}
act2 : xi := {δj 7→ Yj}

end

END

Figure 5.1: A part of Event-B specification for discrete transitions modeling

timed systems. Then we will be able to check significant time dependent

properties of these systems. First, we define timed Fuzzy If-Then rules

that has the form as follows:

IF x(t) is A THEN y(t) is B

This form is similar to the one defined in fuzzy set except that linguistic

variables are now dependent on variable t representing for time clock.

Based on this observation, we refine the abstract model in several steps

to get more precise model. Inspired by the approach presented in [77],

if a fuzzy requirement FR i contains any time-dependent variable, then

we will refine the appropriated event of the abstract machine. Also, we

have introduced in Rule 4 that a variable x is specified as one member of

a Cartesian product of two sets δ ×Y , where δ is a set of fuzzy hedges,

Y is a fuzzy set. Similarly, we add a new continuous variable xc of the

Chapter 5. Modeling and verifying imprecise system requirements 90

refined machine which is formalized by a time dependent function such

as xc ∈ R 7→ δ × P .

MACHINE FR M 1

REFINES FR M 0

VARIABLES

x c

t

m

INVARIANTS

inv1 : xc ∈ R→ P (δ × Y)

inv2 : m ∈ δ × P

inv3 : t ∈ R≥0
inv4 : xc(t) = xi

END

Figure 5.2: A part of Event-B specification for continuous transitions modeling

We introduce two rules for modeling continuous transitions the require-

ments as follows:

• Rule 5: If either variable x i or m i (in a fuzzy requirement FR i)

depends on time, then its corresponding event will be refined. A

new variable t .t ∈ R for representing time clock is added to the

refined machine.

• Rule 6: The time dependent variables (in Rule 1) are replaced by

time functions and glue invariants in the refined machine.

The abstract machine FR M is refined by a concrete machine FR M C

illustrated in Figure 5.4. A new variable t represents for time clock. We

also add a new clause inv4 which is glue invariant of refined and abstract

variable, i.e. xc and xi respectively.

Chapter 5. Modeling and verifying imprecise system requirements 91

5.4 Verifying safety and eventuality properties

5.4.1 Convergence in Event-B

Convergence property of an Event-B machine is the convergence of a

set of its events. It means that a set of events can not run forever. As

a consequence, the other events eventually happen. These events are

called convergent events. To prove this property, Event-B provides a

mechanism to use an variant V which maps to state variable v to a

Natural number, then these events are proved to decrease the variable

v . More specifically, let e be a convergent event, v and v ′ are state

before/after executing e, then we prove that V (v ′) < V (v). Two proof

obligation rules are generated for every convergent event where VAR

(5.1) ensures the decrement of the variant and NAT (5.2) makes sure

that the variant is a natural number after the event execution:

I (v),G(x , v),Q(x , v , v ′) ` V (v ′) < V (v) (5.1)

I (v),G(x , v) ` V (v) ∈ N (5.2)

Besides mapping a variant V to a Natural number, V can refer to a

finite set. In this case, we prove VAR proof obligation by showing that

V (v ′) ⊂ V (v). More precisely, it is illustrated in Sequent 5.3.

I (v),G(x , v),Q(x , v , v ′) ` V (v ′) < V (v) (5.3)

The NAT PO is now not generated, instead we just need to prove V (v)

is a finite set once by using FIN proof obligation (5.4). This proof

obligation does not depend on a set of convergent and anticipated events.

Chapter 5. Modeling and verifying imprecise system requirements 92

I (v) ` finite(V (v)) (5.4)

We also recall some properties of an Event-B machine such as conver-

gence and deadlock-free as follows:

• Machine M is convergent in a state formula P if any trace of its

execution does not end with an infinite sequence of P-states.

• Machine M is Convergent in state formula P if the infinite trace of

M ends with an infinite sequence of P-states.

• Machine M is deadlock-free in P if it does not end in a P-state.

5.4.2 Safety and eventuality analysis in Event-B

Event-B provides the way to express safety properties directly by using

the invariants. Hence, we can prove the correctness of these properties

using INV proof obligation. Recall that, the INV proof obligation ensure

that a invariant is maintained after and before executing an event. It is

formally defined as

I(v) ∧ A(v) ∧ G(v) ∧ S (v , v ′) ` I(v ′)

where v is the variable, v ′ is the new value after assignment S , A is a

set of axioms, G is the event guard.

Event-B does not support to specify liveness properties directly but we

can follow the approach [71] to verify properties such as existence (�♦P),

progress (�(P1 ⇒ ♦P2)), persistence (♦�P), where P is any first order

logic formula, ♦ and � are standard operators of Linear Temporal Logic

Chapter 5. Modeling and verifying imprecise system requirements 93

(LTL), under weakness assumption. We will discuss here in detail exis-

tence property.

Let M be a machine and P is a first-order logic formula. Assume that a

given machine M with n events ei(i ∈ 1..n), ei = any x where G(x , v)

then A(x , v , v ′) end. They claim that if M is convergent in ¬P and M

is deadlock-free in ¬P then �♦P is satisfied in M . This approach uses

the variant clause to prove convergence of a machine and we introduce

an auxiliary refined machine at the last refinement process to apply this

proof method. The method is illustrated as the following steps:

1. Define an integer variant V (v)

2. Check if machine M is deadlock-free in P

3. For each event ei

• Check if ei is convergent in P

4. if M is convergent and deadlock-free in P, then M will eventually

satisfies P .

5.4.3 Verifying safety properties

Generally, safety properties are expressed directly by the invariants.

Hence, safety properties of a systems described by a collection of Fuzzy

If-Then are translated directly to invariants. We will show that the

translation assure preservation of safety properties through imprecise

requirements.

Corollary 5.6. With the modeling proposed in transformation rules, the

safety properties are preserved by all actions in imprecise requirements

of the system. It is formally define as M ` I ⇒ FR ` S

Chapter 5. Modeling and verifying imprecise system requirements 94

Proof. Suppose that, a collection of imprecise requirements FR =

{FRi}, i = 1, n, is specified by corresponding event evti . Safety prop-

erties of the system are specified in the invariant I. We have to prove

that safety constraints are preserved through all requirements by showing

that it remains true before and after firing (executing) each event. This

is obviously achieved through proof obligations of the Event-B machines

which is used to preserve their invariants.

Without loss of generality, we assume that the imprecise requirements

and constraints contain one variable v , hence we need to prove:

I(v) ∧ evti(v , v ′) ` I(v ′)

This predicate allows us to ensure the safety properties after executing

the events in model, which is exactly the form of a proof obligation gen-

erated from Event-B machine and we can analyse them using the support

tool (Rodin). Therefore, the safety properties stated in requirements are

shown preserved. �

5.4.4 Verifying eventuality properties

Recall that, the paper [71] introduced reasoning techniques to prove

classes of liveness properties such as existence, progress, persistence.

They claims that with a state formula P which is a first-order logic for-

mula and an Event-B machine M that is convergent and deadlock-free

in P then ¬P will always eventually (�♦¬P) holds.

In order to reason about eventuality properties on a set of fuzzy If-Then

rules, we first map fuzzy values to Natural numbers. Since fuzzy sets

can be represented by classical sets consisting of discrete values (Section

5.3.1), the mapping on Natural numbers instead of a continuous range

Chapter 5. Modeling and verifying imprecise system requirements 95

[0..1] is acceptable. Therefore, we give a new definition of fuzzy sets as

follows

Definition 5.7 (Fuzzy set). A fuzzy set is a pair 〈U , µ〉, where U is

a set and µ is the membership degree function, can be represented as

a pair 〈P , µs〉, where P is a crisp set, µs is a total function such that

µs : P → N

Similarly, we also use a total function µh : δ → N as mapping values of

fuzzy hedges.

We already state that a system is specified by a collection of requirements

FRi :

if xi is δiYi then mi is γiPi

We propose a refinement-based approach to modeling with an introduc-

tion of additional translation rules to extend the context and refine the

machine of the abstract model as follows

• Rule 7. Fuzzy values of each element in P ,Y and hedges δ are

translated to total functions degP : P → N, degyY : Y → N, degH :

δ → N respectively.

• Rule 8: Adds a variant mapping to linguistic variable that appears

in eventuality property expression Q .

• Rule 9. Refines each event representing for fuzzy if-then require-

ments by two events: a convergent and an ordinary one.

• Rule 10. Adds a clause ¬Q(xi) to the guards of each convergent

event, and a clause Q(xi) to the ordinary one.

Chapter 5. Modeling and verifying imprecise system requirements 96

• Rule 11. Deadlock free property is encoded as a theorem of the

refined machine.

A partial Event-B specification for these rules is depicted in Figure 5.3.

CONTEXT FR C 2

EXTENDS FR C

CONSTANTS

degP

degY

degδ

AXIOMS

degP ∈ P → N
degY ∈ Y → N
degH ∈ δ → N

END

MACHINE FR M 2

SEES FR C 1

REFINES FR M 1

VARIABLES

vx

INVARIANTS

inv4 : vx ∈ N
VARIANT

vx

EVENTS

Event evi CE =̂

Status convergent

extends evti

when
grd1 : xi = {δi 7→ Yi}
grd2 : ¬ Q(xi)
grd3 : vx := degY(Yi)

then
act1 : mi := {δi 7→ Pi}
act2 : xi := {δj 7→ Yj}
act3 : vx := degY(Yj)

end

Event evi OE =̂

Status ordinary

extends evti

when
grd1 : xi = {δi 7→ Yi}
grd2 : Q(xi)
grd3 : vx := degY(Yi)

then
act1 : mi := {γi 7→ Pi}
act2 : xi := {δj 7→ Yj}
act3 : vx := degY(Yj)

end

END

Figure 5.3: A part of Event-B specification for eventuality property modeling

Chapter 5. Modeling and verifying imprecise system requirements 97

Before showing that if a collection of requirements satisfy a eventuality

property Q(x), we introduce definitions relating to some properties of

fuzzy rules.

Definition 5.8 (Convergence). Fuzzy rules are convergent from a state

Q(x) if each rule decreases value of variable x. It is formally defined as:

FRi ,Q(x) ` x ′ < x , where x ′ is value after executing rule FRi .

Definition 5.9 (Deadlock-freeness). Fuzzy rules are deadlock-free in a

state Q(x) if IF clause of at least one rule is satisfied. It is formally

defined as

Q(x)⇒
n∨

i=1

(∃ xi .xi = δYi)

Corollary 5.10. With proposed translation rules, if a collection of Fuzzy

If-Then rules {FR} are convergent and deadlock-free from a first-order

logic state formula Q(x) where x is a linguistic variable then the state

property ¬Q(x) will always eventually holds. Formally, we have {FR} `
�♦¬Q(x).

Proof.

Suppose that, a collection of fuzzy if-then rules FR = {FRi}, i = 1, n,

is first formalized by an abstract machine FR M 1, then is refined by

another machine FR M 2 containing a set of convergent events evti .

Applying Rule 9, each fuzzy rule is represented by a convergent event

evti with guard G(x). Following Rule 10, a new clause ¬Q(x) is added

to the guard condition of each convergent event.

According to the translation Rule 6 and 7, approximation of a linguistic

variable x is a natural number and is mapped to an variant V (x). Fur-

thermore, each fuzzy rule decreases the fuzzy variable x (Definition 5.8),

i.e V (x ′) < V (x). Hence, we have

Chapter 5. Modeling and verifying imprecise system requirements 98

I,G(x),¬Q(x) ` V (x ′) < V (x).

This predicate is the form of VAR proof obligation generated from Event-

B machine to prove that all events of the machine FR M 2 are convergent

(*).

We already state that fuzzy rules are deadlock free in Q(x), according to

Rule 9, 10 and Definition 5.9 we have: Q(x)⇒
n∨

i=1

(∃ i .G(evi) ∧ ¬Q(x)).

This predicate is the form of DLF proof obligation generated from Event-

B machine to prove machine FR M 2 is deadlock-free in Q(x)(**).

From (*) and (**), based on the reasoning technique in [71], we have a

conclusion: {FR} ` �♦¬Q(x). �

5.5 A case study: Container Crane Control

In this section, first we introduce a scenario of Container Crane Con-

trol [78], then follow the approach in Section 5.3 to model this system

in several refinement steps.

5.5.1 Scenario description

Container cranes are used to load and unload containers on a off ships

in most harbors. They pick up single containers with cables that are

mounted on the crane head (Figure 5.4).

Figure 5.4: Container Crane Control system

Chapter 5. Modeling and verifying imprecise system requirements 99

The crane head moves on a horizontal track from a starting position.

The speed of the crane head is controlled by a motor power with a speed

level. We start the motor with a fast speed. If the crane head is still

far away from the container, we adjust the motor power to a medium

speed. If the crane head is in a distance nearer to the target, we reduce

the speed to slow. When the container is close to the target position, the

speed should be very slow. When the container is above the container,

we stop the motor. The crane head loads containers and goes back to

the start position.

From this description of the system, a collection of fuzzy requirements

FR is extracted as follows:

FR1. if the crane is at starting position, then power is fast level

FR2. if the distance to the container is far, then power is medium level

FR3. if the distance to container is medium, then power is adjusted to

slow level

FR4. if the distance is close, then power is very slow level

FR5. if the crane is above the container, then power is stopped.

The system has a safety property such that the speed of motor can

not be high if the target is not far (property I). The system needs to

satisfy that the crane head eventually is above the container from the

start position (property Q). Then we have to check if {FR} ` I and

{FR} ` �♦Q.

Chapter 5. Modeling and verifying imprecise system requirements 100

5.5.2 Modeling the Crane Container Control system

In this Section, we will use Event-B to model the Container Crane Con-

trol system as the method proposed in Section 5.3. First, we model the

discrete behavior and the continuous one. Then the eventuality proper-

ties will be formalized.

5.5.2.1 Modeling discrete behavior

Applying the translation rules presented in Subsection 5.3.2, we first

translate the set of requirements to the definition of Event-B context as

follows:

• Apply Rule 1 : Fuzzy hedges, generators and values in the collection

of requirements are translated into the sets HEDGES, DISTANCE

and POWER in an Event-B context Crane C 0.

• Apply Rule 2 : The degree membership functions of hedges and fuzzy

values are presented as natural number-valued functions. For exam-

ple: h deg : HEDGES → N states one of hedges. We have another

axiom for this function such as h deg(very) = 3 ∧ h deg(quite) =

2 ∧ h deg(precise) = 1.

Context Crane C 0 is presented partially as follows

CONTEXT Crane C0

SETS

HEDGES, DISTANCE, POWER

CONSTANTS

fast, slow, zero, very, quite, precise, start, far, medium, close, above

Chapter 5. Modeling and verifying imprecise system requirements 101

AXIOMS

axm1 : partition(HEDGES, {very}, {quite}, {precise})
axm2 : partition(DISTANCE, {start}, {far}, {medium}, {close}, {above})
axm3 : partition(POWER, {fast}, {slow}, {zero})

END

We continue to formalize the dynamic part of the model with the follow-

ing translations.

• Apply Rule 3 : Linguistic variables in the requirements are trans-

lated into Event-B constructs such as distance and power. Types of

these two variables are represented by invariants inv1 and inv2.

• Apply Rule 4 : Each imprecise requirement FRi of the system is

translated to an EVENT evti , i = 1, 5. More specifically, the impre-

cise requirement r4 is translated to evt4 illustrated in the machine

Crane M 0. The other requirements are translated similarly. More-

over, in the initial states, distance is equal to start and power is

stopped (modeled in Initialisation event).

The machine Crane M 0 is described partially as follows:

MACHINE Crane M0

SEES Crane C0

VARIABLES

power

distance

INVARIANTS

inv1 : power ∈ P (HEDGES× POWER)

inv2 : distance ∈ P (HEDGES× DISTANCE)

Chapter 5. Modeling and verifying imprecise system requirements 102

inv3 : ran(distance) = close⇒ ¬ran(power) = {fast}

EVENTS

Initialisation

begin

act1 : distance := {precise 7→ start}
act2 : power := {precise 7→ zero}

end

Event evt4 =̂

Status anticipated

when

grd1 : distance = {precise 7→ close}
then

act1 : power := {very 7→ slow}
act2 : distance := {precise 7→ above}

end

END

5.5.2.2 First Refinement: Modeling continuous behavior

We refine the translated model in the first part of this section by having

a closer view of the system. In fact, each movement of the Crane head

is attaching to time axis as it is moving continuously while the power is

adjusted discontinuously. We apply rules presented in Section 5.3.3 as

follows:

• Apply Rule 6 : Five events are refined in the refined machine Crane M 1,

variable t (time counter) is added.

Chapter 5. Modeling and verifying imprecise system requirements 103

• Apply Rule 7 : Refines dis by disc (the distance which is time-

dependent). The new variable of refined machine disc and one of

abstract machine dis have a gluing variant (inv3).

Refined machine Crane M 1 for continuous behaviour is partly described

as follows:

MACHINE Crane M1

REFINES Crane M0

VARIABLES

t

dist c

INVARIANTS

inv1 : distc ∈ R+ → DISTANCE

inv2 : t ∈ dom(dist c)

inv3 : dist c(t) = distance

EVENTS

Initialisation

begin

act1 : t := 0

act2 : dist c := {0 7→ (precise 7→ start)}
end

Event evt4 =̂

Status anticipated

when

grd1 : dist c(t) = precise 7→ medium

then

act3 : t := t + 1

Chapter 5. Modeling and verifying imprecise system requirements 104

act4 : dist c := dist c ∪ {t + 1 7→ (precise 7→ close)}
end

END

5.5.2.3 Second Refinement: Modeling eventuality property

We perform the refinement strategy by following the method described

in Section 5.4.4 to model the desired eventuality property. First, we

apply Rule 6 to extend the abstract context CraneCtrl C 0 to define

CraneCtrl C1 by introducing three total functions for numerical values

of fuzzy sets. The specification of this context is partially described as

follows:

CONTEXT Crane C1

EXTENDS Crane C0

CONSTANTS

deg HED, deg POWER, d DIS

AXIOMS

axm4 : deg HED : HEDGES→ N

axm5 : deg HED(very) = 3 ∧ deg HED(quite) = 2

∧ deg HED(precise) = 1

END

We refine the abstract machine Crane M0 to have Crane M1 with five

convergent events (following Rule 7). The snippets below show evt4 only.

MACHINE Crane M1

REFINES Crane M0

Chapter 5. Modeling and verifying imprecise system requirements 105

SEES Crane C1

VARIABLES

d

VARIANT

d

INVARIANTS

inv1 : d ∈ N

DELF : d = 0 ⇒ ran(distance) = {start} ∨ ran(distance) =

{far} ∨
ran(distance) = {medium} ∨ ran(distance) = {close} ∨
ran(distance) = {above}

EVENTS

Event evt4 CE =̂

Status convergent

extends evt4

when

grd1 : distance =

{precise 7→ close}
grd2 : d = deg DIS(close)

grd3 : ¬d = deg DIS(above)

then

act1 : power := {very 7→ slow}
act2 : distance :=

{precise 7→ above}
act2 : d := deg DIS(above)

end

Event evt4 OE =̂

Status ordinary

Chapter 5. Modeling and verifying imprecise system requirements 106

extends evt4

when

grd1 : distance =

{precise 7→ close}
grd2 : d = deg DIS(close)

grd3 : d = deg DIS(above)

then

act1 : power := {very 7→ slow}
act2 : distance :=

{precise 7→ above}
act2 : d := deg DIS(above)

end

END

5.5.3 Checking properties

The system has a safety property which is formalized as an invariant

clause

inv4 : ran(distance) = {close} ⇒ ¬ran(power) = {fast}. Invariant

preservation PO is generated for each event of the machine Crane M 0.

Table 5.1 shows the invariant preservation PO for invariant inv4 of event

evt4

Table 5.1: INV PO of event evt4
ran(distance) = {close} ⇒ ¬ran(speed) = {fast}
dis = {precise 7→ close} evt4/inv4/INV
`
ran ({precise 7→ above}) = {close} ⇒ ¬ran ({very 7→ slow}) = {fast}

All such proof obligations are generated and discharged automatically for

machine Crane M 0 using the Rodin tool under the label evti/inv4/INV , i =

Chapter 5. Modeling and verifying imprecise system requirements 107

1..5 (Figure 5.5). It ensures that invariant is preserved through events,

i.e. the collection requirements of this system conform to the safety

property.

Figure 5.5: Safety properties are ensured in the Rodin tool automatically

While safety property is maintained in every refinement, eventuality can

only be verified in the machine Crane M 1. Hence, we have to prove that

eventually the crane loader will reach above position of container, i.e.

Crame M 1 ` �♦(d = deg DIS (above)). The deadlock-free property of

this machine is encoded as the theorem DELF in Crane M 1. Its proof

obligation is generated as DELF/THM .

Table 5.2: Deadlock free PO of machine Crane M 1
d = deg DIS (above)
⇒
d = deg DIS (start) ∨ d = deg DIS (far) DELF/THM
d = deg DIS (medium) ∨ d = deg DIS (close)
d = deg DIS (above)

In order to check the convergent property, proof obligations are gener-

ated for each convergent events of machine Crane M 1 (evti/NAT and

evti/VAR). Table 5.3 is the proof obligation that shows event evt4 of

machine Crame M 1 decrease variant d .

All proof obligations of the deadlock-freeness and convergence are dis-

charged automatically in the Rodin tool.

Chapter 5. Modeling and verifying imprecise system requirements 108

Table 5.3: VAR PO of event evt4
dis = {precise 7→ close}
¬d = deg DIS (close)
d = deg DIS (close) evt4 CE/VAR
`
d − (deg DIS (close)− deg DIS (above)) < d

5.6 Chapter conclusions

There are few work up to date that have addressed the problem of mod-

eling and verifying systems described by imprecise requirements. Most of

research results have focused on modeling and representing fuzzy terms.

In this chapter, we use classical set theory to represent fuzzy terms, after

that formalize and verify it by an Event-B model. Since formal methods

has been researched so far to dedicatedly formalize precise requirements,

our work provides a novel approach to model imprecise requirements.

We extend Fuzzy If-Then rules by timed Fuzzy If-Then rules which can

be used to describe the continuous behavior of the system. This chapter

also presents a new refinement-based method for modeling and verifying

safety and eventuality properties of such systems. As far as we know,

the proposed methods provide the first concrete results of formal check-

ing such properties of imprecise requirements. The research result of

checking safety property was published in [79] and the one of checking

eventuality properties are accepted to appear in Proceedings of The 30th

ACM/SIGAPP Symposium On Applied Computing - SE Track [80].

However, due to some limitation of the RODIN, we had to introduce a

kind of approximation to use N instead of R. This limitation will be over-

come by incorporating new plugins [81]. One drawback of our method

is that the eventualities can only be checked at the last refinement. To

overcome limitation, we need to improve the reasoning methods.

Chapter 6

Conclusions

6.1 Achievements

Constructing reliable software systems is one of the most important ob-

jectives of software engineering. Using formal methods such as formal

modeling and verification is one of the most recommended ways. It al-

lows to have not only a better understand of the system but also can

perform formal reasoning about the correctness of significant properties.

Formal modeling and verification techniques ensure the absent of errors

mathematically. For each kind of software architectures and styles, ones

propose suitable methods for modeling and verifying.

The event-driven architecture is applied widely for many software sys-

tems in various domains. The event-driven systems are able to send and

react to events to outside or to different inside components of the sys-

tems. Hence, it looses the coupling between the system’s components.

One important benefit of this architectural style is that it provides strong

support for reuse. Any component can be introduced into a system sim-

ply by registering it for the events of that system. Another advantage is

109

Chapter 6. Conclusions and Future work 110

that its components may be replaced easily by other components without

affecting the interfaces of other components in the system. Besides these

advantages, the event-driven systems may face many problems. For ex-

ample,when a component announce an event, the system does have any

registered component to handle that or can not know if it is finished.

Reasoning about correctness of such systems also can be problematic,

since the meaning of a procedure that announces events will depend on

the context of bindings in which it is invoked. As a consequence, formal

modeling and verification of such systems are an emerging topic that

inspires many research group in the world. It is valuable especially if we

can verify the system at early design time because it reduces the cost of

development. Many research work have been attempted for this topic

but it is still insufficient.

In comparison to the previous work, the thesis provides a different ap-

proach in modeling and verifying even-driven systems. The thesis covers

not only the systems described by precise requirements but also the im-

precise ones. The thesis proposes new methods that use Event-B formal

method for analyzing such systems. Event-B is mainly based on first or-

der logic, set theory and is suitable for complex, large reactive systems.

Event-B communities also provide rich of supporting tools to model and

verify the software system.

In the first part of the thesis, instead of working on a reference model of

event-driven architecture which are more abstract and describe a larger

class of systems, we focus on applications of two types of even-driven

systems database systems including triggers and context-ware systems.

Two applications have particular properties and provided functionalities.

Though, in these systems, triggers and production rules have the same

structure which is in the form of ECA format. Our proposed methods are

Chapter 6. Conclusions and Future work 111

based on the similar working mechanism of an ECA rule and an Event-

B events. For this reason, the modeling process is natural and easy.

Furthermore, since we directly use Event-B to formalize the systems, we

do not need any more intermediate step to check the system correctness.

We summarize these methods as follows

• To analyze modern database systems including active databases, we

propose a set of translation rules to translate all objects of database

systems to Event-B constructs. Formalization of database triggers is

deeply investigated. The significant properties such as business con-

straints, and looping are can be expressed and checked by invariants

clauses. The supporting tool Trigger2B is also developed to assist

the automatic translation of database systems to Event-B models.

This result may overcome the difficulty that makes formal methods

absent in real database applications development. The practical

tool is supposed to automatically translate and export the result to

file formats that is understandable by several provers such as the

Rodin. Then database developers can easily check the correctness

of the system that they are designing.

• To analyze context-aware systems, we map the concept of context

data to Event-B context. The relations of context entities hence

can be expressed by sets, axioms and Event-B context extension

mechanism. The other components of a context-aware system is

also mapped to Event-B concepts. The proposed method makes

use of Event-B refinement to model the system incrementally. The

important property such as the context constraint can be verified in

every refinement stage.

Chapter 6. Conclusions and Future work 112

In the second part, the thesis also makes significant contributions on

analyzing event-driven systems specified by imprecise requirements. Al-

though imprecise requirements are often found in software development

processes, few work have been addressed the problem of modeling and

verifying such descriptions so far. This part presents a new specification

and verification framework, in which the requirements were modeled in

the Fuzzy If-Then rules. The rules were translated into a set of Event-

B descriptions so that the refinement-based modeling method could be

applied for the verification. We summarize this part as follows

• Modeling: We first propose to use classical-set to represent fuzzy

sets, and prove that a set of Fuzzy If-Then rules can be represented

by classical set. We also work on modeling of timed fuzzy event-

driven systems by introducing a new form of timed Fuzzy If-Then

rules. This modeling method allows to formalize both discrete and

timed systems which are described by imprecise requirements that

is often being used in fuzzy control systems.

• Verification: The proposed methods make use of Event-B refinement

and use existing reasoning methods to formally verify both safety

and eventuality properties. These are the first concrete results of for-

mal checking of such properties for imprecise system requirements.

The illustrative examples of the thesis are modeled by the Rodin tool

which allows to automatically generate necessary proof obligations for

verification. Almost generated POs are also discharged automatically in

the Rodin tool. This helps to reduce the complexity and effort of manual

proving for proof obligations.

Chapter 6. Conclusions and Future work 113

6.2 Limitations

Besides the achievement, the thesis still has remaining issues need to

be discussed. There are many types of event-driven systems including

graphic user interfaces of programs where user interface events signify

program commands, rule-based production systems where a condition

becoming true causes an action to be triggered, and active objects where

changing a value of an object’s attribute triggers some actions. Scope of

the thesis is handling with two applications of such as database systems

including triggers and context-aware systems. Furthermore, the event

control mechanism also has various kinds but these systems only use

ECA mechanism to describe responsive actions to raised events. Using

If-Then rules and Fuzzy If-Then rules to express the behavior of the

system seem not enough in some cases. We discuss relating issues for

each proposed method as follows

• The proposed method for modeling and verifying database systems

does not support to reason directly about termination property,

while it is one of desired properties that developers want to check.

It also just handle is simple case that contains only a sequence of

DML statements that does not contain nested statements and full

trigger syntax such as for/loop statements. In case that we want to

formalize any kind of triggers, we need to propose more efficient al-

gorithms to parse and translate their content. Moreover, this thesis

also just handle with DML triggers but do not consider other types

of triggers.

• The proposed method for modeling context-aware systems already

reuse Event-B concept to represent context data. Due to lacking of

primitive data type support in Event-B, we can only enrich context

Chapter 6. Conclusions and Future work 114

data modeling by incorporating new plugins. Context data is of-

ten complex and contains many types of data. Furthermore, a real

context-ware application often contains time related data. However,

Event-B does not support temporal logic, hence modeling and ver-

ifying such applications will face several problems. The proposed

method needs to be extended to model time dependent variables.

• The method for modeling and verifying imprecise systems require-

ments handles both cases of discrete and continuous behavior of the

systems. It analyse both safety and eventuality properties of the

systems. We showed that the verification was mostly conducted au-

tomatically using the current RODIN tool. However, due to some

limitation of the RODIN, we had to introduce a kind of approxima-

tion to use N instead of R. Moreover, time related properties are

not discussed yet. Describing the behavior of the system by Fuzzy

If-Then rules is also not general enough. Besides eventuality proper-

ties, there are several liveness properties are necessary to be verified

to warranty the system correctness such as progress, persistence.

These kinds of properties are not mentioned yet.

6.3 Future work

In the future, we continue to research further on the topics which have

been presented in the thesis and have been achieved with the beginning

results. More specifically, the future research directions are as follows

• One of the thesis research direction is developing a Rodin plugin tool

for database trigger systems modeling. We also will handle more

complex triggers with nested DML statements combining with loop

Chapter 6. Conclusions and Future work 115

and condition statements. In case of complex nested statements, we

may need to apply composition techniques to model that kind of

triggers by composited events. Reasoning about termination prop-

erty of triggers is going to investigated along with considering more

types of triggers is one of our future work.

• We will extend the method for modeling method context-aware sys-

tems by using the Theory plugin which allows to create and define

semantics for various kind of context data which are frequently used

such as: time, location. The proposed method will be extended to

modeling more complex relationship between contexts. Currently,

there are several framework for describe context-aware. We intend

to directly map context specification language to Event-B.

• With proposed method, a collection of imprecise requirements which

are described by Fuzzy If-Then rules can be specified by Event-B. It

introduced a concept of timed Fuzzy If-Then rules to model timed

systems but it is not investigated deeply yet. For example, the

verification of the interesting properties which are time-dependent

is not discussed yet. Our future work in this direction will focus on

analyzing such properties.

• The current method for proving liveness properties is implemented

at the last refinement. The work for other interesting liveness prop-

erties. Therefore, proving liveness properties at every refinement

stage is also an objective. Furthermore, the theoretical background

for liveness reasoning in Event-B also need to be extended for gen-

eral cases including fairness assumption. That also makes it possible

to verify the other important liveness properties such as persistence,

progress.

116

LIST OF PUBLICATIONS

1. Hong Anh Le and Ninh Thuan Truong. Modeling and Verifying WS-CDL Using Event-

B. In Proc. ICCASA 2012. LNICST Vol 109, pp. 290-299, Springer, 2013.

2. Hong Anh Le and Ninh Thuan Truong: Modeling and Verifying DML Triggers Using

Event-B, In Proc. ACIIDS 2013. LNCS Vol 7083, Vol 2, pp. 539-548, Spinger, 2013.

3. Hong Anh Le, Loan Dinh Thi and Ninh Thuan Truong: Modeling and Verifying Im-

precise Requirements of Systems Using Event-B. In Proc. KSE 2013. AISC Vol 244,

pp. 313-325, Springer, 2013.

4. Hong Anh Le and Ninh Thuan Truong: Formal Modeling and Verification of Context-

Aware Systems Using Event-B. In Proc. ICCASA 2013. LNICST Vol 128, pp. 250-259,

Springer 2014 (The best paper award).

5. Hong Anh Le and Ninh Thuan Truong: Formal Modeling and Verification of Context-

Aware Systems Using Event-B. In EAI Endorsed Transactions on Context-Aware Sys-

tems and Applications. ISSN 2409-0026. (accepted)

6. Hong Anh Le, Ninh Thuan Truong and Shin Nakajima: Verifying Eventuality Proper-

ties of Imprecise System Requirements. The 30th ACM/SIGAPP Symposium On Ap-

plied Computing - Software Engineering Track, April 13–17, 2015. Salamanca, Spain.

(accepted)

Bibliography

[1] Kevin Lano. The B Language and Method: A Guide to Practical Formal Devel-

opment. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1996.

ISBN 3540760334.

[2] Harry Chen. An Intelligent Broker for Context-Aware Systems. PhD thesis, Uni-

versity of Maryland, 2004.

[3] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking (Represen-

tation and Mind Series). The MIT Press, 2008. ISBN 026202649X, 9780262026499.

[4] Melvin Fitting. First-order Logic and Automated Theorem Proving (2Nd Ed.).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996. ISBN 0-387-94593-8.

[5] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Pro-

gram Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999. ISBN

3540654100.

[6] Ian Sommerville. Software Engineering (8th Ed.). Addison Wesley Longman Pub-

lishing Co., Inc., Redwood City, CA, USA, 2007. ISBN 978-0-321-31379-9.

[7] Gabor Madl. Model-based Analysis of Event-driven Distributed Real-time Embed-

ded Systems. PhD thesis, Long Beach, CA, USA, 2009. AAI3364975.

[8] J.M. Atlee and J. Gannon. State-based model checking of event-driven system re-

quirements. Software Engineering, IEEE Transactions on, 19(1):24–40, Jan 1993.

ISSN 0098-5589. doi: 10.1109/32.210305.

[9] I. Ray and P. Ammann. Using the b-toolkit to ensure safety in scr specifications.

In Computer Assurance, 1997. COMPASS ’97. Are We Making Progress Towards

117

Bibliography 118

Computer Assurance? Proceedings of the 12th Annual Conference on, pages 1–12,

Jun 1997.

[10] Ludger Fiege, Gero Mühl, and Felix C. Gärtner. Modular event-based systems.

Knowl. Eng. Rev., 17(4):359–388, December 2002. ISSN 0269-8889. doi: 10.1017/

S0269888903000559. URL http://dx.doi.org/10.1017/S0269888903000559.

[11] Huy Tran and Uwe Zdun. Event actors based approach for supporting analysis

and verification of event-driven architectures. In Proceedings of the 2013 17th

IEEE International Enterprise Distributed Object Computing Conference, EDOC

’13, pages 217–226, Washington, DC, USA, 2013. IEEE Computer Society. ISBN

978-0-7695-5081-7. doi: 10.1109/EDOC.2013.32. URL http://dx.doi.org/10.

1109/EDOC.2013.32.

[12] Muffy Calder and Michele Sevegnani. Process algebra for event-driven runtime ver-

ification: A case study of wireless network management. In John Derrick, Stefania

Gnesi, Diego Latella, and Helen Treharne, editors, Integrated Formal Methods,

volume 7321 of Lecture Notes in Computer Science, pages 21–23. Springer Berlin

Heidelberg, 2012. ISBN 978-3-642-30728-7. doi: 10.1007/978-3-642-30729-4 2.

URL http://dx.doi.org/10.1007/978-3-642-30729-4_2.

[13] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineer-

ing. Cambridge University Press, New York, NY, USA, 1st edition, 2010. ISBN

0521895561, 9780521895569.

[14] J.-R. Abrial. The B-book: Assigning Programs to Meanings. Cambridge University

Press, New York, NY, USA, 1996. ISBN 0-521-49619-5.

[15] Dblp. http://dblp.org, 2014. URL http://dblp.org.

[16] Event-b and the rodin platform. http://www.event-b.org, 2012.

[17] Ken Robinson. The b method and the b toolkit. In Michael Johnson, editor,

Algebraic Methodology and Software Technology, volume 1349 of Lecture Notes in

Computer Science, pages 576–580. Springer Berlin Heidelberg, 1997. ISBN 978-

3-540-63888-9. doi: 10.1007/BFb0000503. URL http://dx.doi.org/10.1007/

BFb0000503.

http://dx.doi.org/10.1017/S0269888903000559
http://dx.doi.org/10.1109/EDOC.2013.32
http://dx.doi.org/10.1109/EDOC.2013.32
http://dx.doi.org/10.1007/978-3-642-30729-4_2
http://dblp.org
http://www.event-b.org
http://dx.doi.org/10.1007/BFb0000503
http://dx.doi.org/10.1007/BFb0000503

Bibliography 119

[18] C. M. Prashanth, K.C. Shet, and J. Elamkulam. An efficient event based approach

for verification of uml statechart model for reactive systems. In Advanced Com-

puting and Communications, 2008. ADCOM 2008. 16th International Conference

on, pages 357–362, Dec 2008.

[19] S. Jalili and M. Mirzaaghaei. Rverl: Run-time verification of real-time and reactive

programs using event-based real-time logic approach. In Software Engineering

Research, Management Applications, 2007. SERA 2007. 5th ACIS International

Conference on, pages 550–557, Aug 2007. doi: 10.1109/SERA.2007.116.

[20] Marcelo d’Amorim and Klaus Havelund. Event-based runtime verification of java

programs. SIGSOFT Softw. Eng. Notes, 30(4):1–7, May 2005. ISSN 0163-5948.

doi: 10.1145/1082983.1083249. URL http://doi.acm.org/10.1145/1082983.

1083249.

[21] José Luiz Fiadeiro and Antónia Lopes. An algebraic semantics of event-based

architectures. Mathematical. Structures in Comp. Sci., 17(5):1029–1073, October

2007. ISSN 0960-1295. doi: 10.1017/S0960129507006299.

[22] E. Posse and J. Dingel. Kiltera: A language for timed, event-driven, mobile and

distributed simulation. In Distributed Simulation and Real Time Applications (DS-

RT), 2010 IEEE/ACM 14th International Symposium on, pages 87–96, Oct 2010.

doi: 10.1109/DS-RT.2010.19.

[23] E. Posse and H. Vangheluwe. Kiltera: A simulation language for timed, dynamic

structure systems. In Simulation Symposium, 2007. ANSS ’07. 40th Annual, pages

293–300, March 2007. doi: 10.1109/ANSS.2007.25.

[24] Aymen Baouab, Olivier Perrin, and Claude Godart. An event-driven approach for

runtime verification of inter-organizational choreographies. In Services Computing

(SCC), 2011 IEEE International Conference on, pages 640–647, July 2011.

[25] G.L.J.M. Janssen. Hardware verification using temporal logic: A practical view. In

L. Claesen, editor, Formal VLSI Correctness Verification, pages 159–168. Elsevier

Science Publisher (North-Holland), 1990.

[26] Mordechai Ben-Ari. Mathematical Logic for Computer Science. Springer, 2012.

http://doi.acm.org/10.1145/1082983.1083249
http://doi.acm.org/10.1145/1082983.1083249

Bibliography 120

[27] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and Rea-

soning about Systems. Cambridge University Press, 2004.

[28] Lotfi A. Zadeh. Fuzzy sets. Information and Control, 8(3):338–353, 1965.

[29] L.A. Zadeh. Toward a theory of fuzzy systems. Technical Report NASA CR-1432,

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, 1969.

[30] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer, 23

(9):8–23, September 1990. ISSN 0018-9162.

[31] John V. Guttag and James J. Horning. Larch: Languages and Tools for Formal

Specification. Springer-Verlag New York, Inc., New York, NY, USA, 1993. ISBN

0-387-94006-5.

[32] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José Meseguer.

Principles of obj2. In Proceedings of the 12th ACM SIGACT-SIGPLAN Sympo-

sium on Principles of Programming Languages, POPL ’85, pages 52–66, New York,

NY, USA, 1985. ACM. ISBN 0-89791-147-4. doi: 10.1145/318593.318610. URL

http://doi.acm.org/10.1145/318593.318610.

[33] J. M. Spivey. The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1989. ISBN 0-13-983768-X.

[34] Cliff B. Jones. Systematic Software Development Using VDM (2Nd Ed.). Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1990. ISBN 0-13-880733-7.

[35] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):

666–677, August 1978. ISSN 0001-0782. doi: 10.1145/359576.359585. URL http:

//doi.acm.org/10.1145/359576.359585.

[36] James Lyle Peterson. Petri Net Theory and the Modeling of Systems. Prentice

Hall PTR, Upper Saddle River, NJ, USA, 1981. ISBN 0136619835.

[37] Jan Storbank Pedersen Mark H. Klein. Using the vienna development method

(vdm) to formalize a communication protocol. Technical report, Software Engi-

neering Institute Carnegie Mellon University, 1998.

http://doi.acm.org/10.1145/318593.318610
http://doi.acm.org/10.1145/359576.359585
http://doi.acm.org/10.1145/359576.359585

Bibliography 121

[38] Atelier b. http://www.atelierb.eu/en/, 2013. URL http://www.atelierb.eu/

en/.

[39] Andrew Eisenberg and Jim Melton. Sql: 1999, formerly known as sql3. SIGMOD

Rec., 28(1):131–138, March 1999. ISSN 0163-5808. doi: 10.1145/309844.310075.

URL http://doi.acm.org/10.1145/309844.310075.

[40] Bill Schilit, Norman Adams, and Roy Want. Context-aware computing appli-

cations. In In Proceedings of the Workshop on Mobile Computing Systems and

Applications, pages 85–90. IEEE Computer Society, 1994.

[41] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark Smith,

and Pete Steggles. Towards a better understanding of context and context-

awareness. In Proceedings of the 1st International Symposium on Handheld

and Ubiquitous Computing, HUC ’99, pages 304–307, London, UK, UK, 1999.

Springer-Verlag. ISBN 3-540-66550-1. URL http://dl.acm.org/citation.cfm?

id=647985.743843.

[42] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on

context-aware systems. Int. J. Ad Hoc Ubiquitous Comput., 2(4):263–277, jun

2007. ISSN 1743-8225.

[43] S.-Y. Lee and T.-W. Ling. Are your trigger rules correct? In Proceedings of the

9th International Workshop on Database and Expert Systems Applications, DEXA

’98, pages 837–, Washington, DC, USA, 1998. IEEE Computer Society. ISBN 0-

8186-8353-8.

[44] Sin Yeung Lee and Tok Wang Ling. Verify updating trigger correctness. In Pro-

ceedings of the 10th International Conference on Database and Expert Systems

Applications, DEXA ’99, pages 382–391, London, UK, UK, 1999. Springer-Verlag.

ISBN 3-540-66448-3.

[45] Eun-Hye Choi, Tatsuhiro Tsuchiya, and Tohru Kikuno. Model checking active

database rules under various rule processing strategies. IPSJ Digital Courier, 2:

826–839, 2006.

http://www.atelierb.eu/en/
http://www.atelierb.eu/en/
http://doi.acm.org/10.1145/309844.310075
http://dl.acm.org/citation.cfm?id=647985.743843
http://dl.acm.org/citation.cfm?id=647985.743843

Bibliography 122

[46] Lorena Chavarŕıa-Báez and Xiaoou Li. Verification of active rule base via condi-

tional colored petri nets. In SMC, pages 343–348, 2007.

[47] Indrakshi Ray and Indrajit Ray. Detecting termination of active database rules

using symbolic model checking. In Proceedings of the 5th East European Conference

on Advances in Databases and Information Systems, ADBIS ’01, pages 266–279,

London, UK, UK, 2001. Springer-Verlag. ISBN 3-540-42555-1.

[48] Elena Baralis. Rule analysis. In Active Rules in Database Systems, pages 51–67.

Springer, New York, 1999.

[49] Tarek Ghazi and Michael Huth. An Abstraction-Based Analysis of Rule Systems

for Active Database Management Systems. Technical report, Kansas State Uni-

versity, April 1998. Technical Report KSU-CIS-98-6, pp15.

[50] Eun-Hye Choi, Tatsuhiro Tsuchiya, and Tohru Kikuno. Model checking active

database rules. Technical report, AIST CVS, Osaka University, Japan, 2006.

[51] R.Manicka Chezian and T.Devi. A new algorithm to detect the non-termination

of triggers in active databases. International Journal of Advanced Networking and

Applications, 3(2):1098–1104, 2011.

[52] Antlr v3. http://www.antlr3.org, 2012.

[53] HongAnh Le and NinhThuan Truong. Modeling and verifying dml triggers using

event-b. In Ali Selamat, editor, Intelligent Information and Database Systems,

volume 7803 of Lecture Notes in Computer Science, pages 539–548. Springer Berlin

Heidelberg, 2013. ISBN 978-3-642-36542-3.

[54] Thomas Strang and Claudia Linnhoff-Popien. A context modeling survey. In

In: Workshop on Advanced Context Modelling, Reasoning and Management, Ubi-

Comp 2004 - The Sixth International Conference on Ubiquitous Computing, Not-

tingham/England, 2004.

[55] Claudia Linnhoff-Popien Michael Samulowitz, Florian Michahelles. Capeus: An

architecture for context-aware selection and execution of services. In Krzysztof

Zieliński, Kurt Geihs, and Aleksander Laurentowski, editors, New Developments

http://www.antlr3.org

Bibliography 123

in Distributed Applications and Interoperable Systems, volume 70 of IFIP Inter-

national Federation for Information Processing, pages 23–39. Springer US, 2002.

ISBN 978-0-7923-7481-7. URL http://dx.doi.org/10.1007/0-306-47005-5_3.

[56] Karen Henricksen, Jadwiga Indulska, and Andry Rakotonirainy. Modeling context

information in pervasive computing systems. In Proceedings of the First Interna-

tional Conference on Pervasive Computing, Pervasive ’02, pages 167–180, London,

UK, UK, 2002. Springer-Verlag. ISBN 3-540-44060-7.

[57] Jadwiga Indulska, Ricky Robinson, Andry Rakotonirainy, and Karen Henricksen.

Experiences in using cc/pp in context-aware systems. In Proceedings of the 4th

International Conference on Mobile Data Management, MDM ’03, pages 247–

261, London, UK, UK, 2003. Springer-Verlag. ISBN 3-540-00393-2. URL http:

//dl.acm.org/citation.cfm?id=648060.747270.

[58] S.K. Mostefaoui. A context model based on uml and xml schema representa-

tions. In Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS

International Conference on, pages 810–814, 2008.

[59] MohamedSalah Benselim and Hassina Seridi-Bouchelaghem. Extended uml for the

development of context-aware applications. In Rachid Benlamri, editor, Networked

Digital Technologies, volume 293 of Communications in Computer and Information

Science, pages 33–43. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-30506-1.

URL http://dx.doi.org/10.1007/978-3-642-30507-8_4.

[60] Anjum Shehzad, Hung Q. Ngo, Kim Anh Pham, and S. Y. Lee. Formal modeling

in context aware systems. In In Proceedings of The 1 st International Workshop

on Modeling and Retrieval of Context (MRC’2004), 2004.

[61] D. Ejigu, M. Scuturici, and L. Brunie. An ontology-based approach to context

modeling and reasoning in pervasive computing. In Pervasive Computing and

Communications Workshops, 2007. PerCom Workshops ’07. Fifth Annual IEEE

International Conference on, pages 14–19, 2007.

http://dx.doi.org/10.1007/0-306-47005-5_3
http://dl.acm.org/citation.cfm?id=648060.747270
http://dl.acm.org/citation.cfm?id=648060.747270
http://dx.doi.org/10.1007/978-3-642-30507-8_4

Bibliography 124

[62] Mikkel B. Kjaergaard and Jonathan Bunde-Pedersen. Towards a formal

model of context awareness. In First International Workshop on Combin-

ing Theory and Systems Building in Pervasive Computing 2006 (CTSB 2006),

2006. URL http://www.daimi.au.dk/~{}jbp/pmwiki.uploads//conawa.baun.

bunde-pedersen.pdf.

[63] Minh H. Tran, Alan Colman, Jun Han, and Hongyu Zhang. Modeling and ver-

ification of context-aware systems. In Proceedings of the 2012 19th Asia-Pacific

Software Engineering Conference - Volume 01, APSEC ’12, pages 79–84, Wash-

ington, DC, USA, 2012. IEEE Computer Society. ISBN 978-0-7695-4922-4.

[64] Alan W. Colman. Role oriented adaptive design. PhD thesis, Swinburne University

of Technology, 2006.

[65] HongAnh Le and NinhThuan Truong. Formal modeling and verification of

context-aware systems using event-b. In Phan CV, editor, Context-Aware Sys-

tems and Applications, volume 128 of Lecture Notes of the Institute for Com-

puter Sciences, Social Informatics and Telecommunications Engineering, pages

250–259. Springer International Publishing, 2014. ISBN 978-3-319-05938-9. doi:

10.1007/978-3-319-05939-6 25.

[66] HongAnh Le and NinhThuan Truong. Formal modeling and verification of context-

aware systems using event-b. EAI Endorsed Transactions on Context-aware Sys-

tems and Applications. ISSN 2409-0026. (accepted).

[67] Benedetto Intrigila, Daniele Magazzeni, Igor Melatti, and Enrico Tronci. A model

checking technique for the verification of fuzzy control systems. In Proc. CIMCA-

IAWTIC’06 - Volume 01, CIMCA ’05, pages 536–542, Washington, DC, USA,

2005. IEEE Computer Society. ISBN 0-7695-2504-0-01.

[68] Stephen J. H. Yang, Jeffrey J. P. Tsai, and Chyun-Chyi Chen. Fuzzy rule base

systems verification using high-level petri nets. IEEE Trans. Knowl. Data Eng.,

15(2):457–473, 2003.

[69] Chris Matthews and Paul A. Swatman. Fuzzy concepts and formal methods: A

fuzzy logic toolkit for z. In Proceedings of the First International Conference of B

http://www.daimi.au.dk/~{}jbp/pmwiki.uploads//conawa.baun.bunde-pedersen.pdf
http://www.daimi.au.dk/~{}jbp/pmwiki.uploads//conawa.baun.bunde-pedersen.pdf

Bibliography 125

and Z Users on Formal Specification and Development in Z and B, ZB ’00, pages

491–510, London, UK, UK, 2000. Springer-Verlag. ISBN 3-540-67944-8.

[70] C. Matthews and P. A. Swatman. Fuzzy concepts and formal methods: some il-

lustrative examples. In Proc. of APSEC 2000, APSEC ’00, pages 230–238, Wash-

ington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0915-0.

[71] ThaiSon Hoang and Jean-Raymond Abrial. Reasoning about liveness properties

in event-b. In Formal Methods and Software Engineering, volume 6991 of LNCS,

pages 456–471. 2011. ISBN 978-3-642-24558-9.

[72] Viktor Pavliska. Petri nets as fuzzy modeling tool. Technical report, University

of Ostrava - Institute for Research and Applications of Fuzzy Modeling, 2006.

[73] Jaroslav Knybel and Viktor Pavliska. Representation of fuzzy if-then rules by petri

nets. In ASIS 2005, pages 121–125, Prerov. Ostrava, Sept 2005.

[74] Jonathan Lee, Nien-Lin Xue, Kuo-Hsun Hsu, and Stephen J. Yang. Modeling

imprecise requirements with fuzzy objects. Inf. Sci., 118(1-4):101–119, September

1999. ISSN 0020-0255.

[75] J. Lee, Yong-Yi FanJiang, Jong-Yin Kuo, and Ying-Yan Lin. Modeling imprecise

requirements with xml. In Proc. of FUZZ-IEEE’02, volume 2, pages 861–866,

2002.

[76] Marlene Goncalves, Rosseline Rodŕıguez, and Leonid Tineo. Formal method to

implement fuzzy requirements. RASI, 9(1):15–24, 2012.

[77] Jean-Raymond Abrial, Wen Su, and Huibiao Zhu. Formalizing hybrid systems with

event-b. In Proc. ABZ 2012, volume 7316 of LNCS, pages 178–193. 2012. ISBN

978-3-642-30884-0. URL http://dx.doi.org/10.1007/978-3-642-30885-7_13.

[78] Fuzzytech home page, 2012. http://www.fuzzytech.com.

[79] HongAnh Le, LoanDinh Thi, and NinhThuan Truong. Modeling and verifying

imprecise requirements of systems using event-b. In Huynh VN, editor, Knowl-

edge and Systems Engineering, volume 244 of Advances in Intelligent Systems and

Computing, pages 313–325. Springer International Publishing, 2014.

http://dx.doi.org/10.1007/978-3-642-30885-7_13

Bibliography 126

[80] Ninh Thuan Truong Hong Anh Le and Shin Nakajima. Verifying eventuality prop-

erties of imprecise system requirements using event-b. In The 30th ACM/SIGAPP

Symposium On Applied Computing - Software Engineering Track, April 2015. (ac-

cepted).

[81] Michael Butler and Issam Maamria. Practical theory extension in event-b.

In Theories of Programming and Formal Methods, volume 8051, pages 67–81.

Springer Berlin Heidelberg, 2013. ISBN 978-3-642-39697-7. doi: 10.1007/

978-3-642-39698-4 5. URL http://dx.doi.org/10.1007/978-3-642-39698-4_

5.

[82] Idir Ait-Sadoune and Yamine Ait-Ameur. From bpel to event-b. In IM FMT’09

Conference, Düsseldorf Germany, Fevruary 2009.

[83] Parnichkun M Aziz M H, Bohez E L and Saha C. Classification of fuzzy petri nets,

and their applications. Engineering and Technology, World Academy of Science,

72:394–407, 2011.

[84] Elena Baralis and Jennifer Widom. An algebraic approach to static analysis of

active database rules. ACM Trans. Database Syst., 25(3):269–332, September

2000. ISSN 0362-5915.

[85] Lorena Chavarŕıa-Báez and Xiaoou Li. A petri net-based metric for active rule

validation. In ICTAI, pages 922–923, 2011.

[86] Lorena Chavarŕıa-Báez and Xiaoou Li. Ecapnver: A software tool to verify active

rule bases. In ICTAI (2), pages 138–141, 2010.

[87] Earl Cox. The Fuzzy Systems Handbook: A Practitioner’s Guide to Building,

Using, and Maintaining Fuzzy Systems. Academic Press Professional, Inc., San

Diego, CA, USA, 1994. ISBN 0-12-194270-8.

[88] HongAnh Le and NinhThuan Truong. Modeling and verifying ws-cdl using event-b.

In Phan CV, editor, Context-Aware Systems and Applications, volume 109 of Lec-

ture Notes of the Institute for Computer Sciences, Social Informatics and Telecom-

munications Engineering, pages 290–299. Springer Berlin Heidelberg, 2013.

http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://dx.doi.org/10.1007/978-3-642-39698-4_5

Bibliography 127

[89] Xiaoou Li, Joselito Medina Marń, and Sergio Chapa. A structural model of eca

rules in active database. In Carlos Coello Coello, Alvaro de Albornoz, Luis Sucar,

and Osvaldo Battistutti, editors, MICAI 2002: Advances in Artificial Intelligence,

volume 2313 of Lecture Notes in Computer Science, pages 73–87. Springer Berlin

/ Heidelberg, 2002. ISBN 978-3-540-43475-7.

[90] L.S. Rocha and R.M.C. Andrade. Towards a formal model to reason about context-

aware exception handling. In Exception Handling (WEH), 2012 5th International

Workshop on, pages 27–33, 2012.

[91] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1996. ISBN 0-13-948472-8.

[92] Yubin Zhong. The design of a controller in fuzzy petri net. Fuzzy Optimization

and Decision Making, 7:399–408, 2008. ISSN 1568-4539.

[93] Spin. http://spinroot.com/spin, 2013. URL http://spinroot.com/spin.

http://spinroot.com/spin

Appendix A

Event-B specification of Trigger

example

This appendix contains full Event-B specification for checking context constraints of

Trigger example in Chapter 3.

A.1 Context specification of Trigger example

An Event-B Specification of DB C

Creation Date: 9Jun2014 @ 04:46:04 PM

CONTEXT DB C

SETS

TYPES

TABLE NAMES

CONSTANTS

EMPL

BONUS

update

128

Appendix A. Event-B specification for Trigger example 129

insert

delete

TBL EMPL

TBL BONUS

AXIOMS

axm1 : partition(TYPES, {update}, {delete}, {insert})

axm2 : partition(TABLE NAMES, {EMPL}, {BONUS})

axm3 : TBL EMPL = N× N

axm4 : TBL BONUS = N× N

END

A.2 Machine specification of Trigger example

An Event-B Specification of DB M

Creation Date: 9Jun2014 @ 04:46:04 PM

MACHINE DB M

SEES DB C

VARIABLES

pk empl

pk bonus

empl rec

bonus rec

type

table

INVARIANTS

inv3 : type ∈ TYPES

inv4 : empl rec ∈ P(TBL EMPL)

inv5 : bonus rec ∈ P(TBL BONUS)

Appendix A. Event-B specification for Trigger example 130

inv6 : table ∈ TABLE NAMES

inv7 : ∀ nid·nid ∈ dom(empl rec) ∧ pk empl(nid) > 5⇒ pk bonus(nid) > 5

inv8 : pk empl ∈ dom(empl rec)�� ran(empl rec)

inv9 : pk bonus ∈ dom(bonus rec)�� ran(bonus rec)

inv10 : ∀ nid·((nid ∈ dom(empl rec) ∧ type = update ∧ table = BONUS ∧

pk bonus(nid) ≥ 10) ∨ (type = update ∧ table = EMPL))

EVENTS

Initialisation

begin

act1 : bonus rec := {5 7→ 10}

act2 : empl rec := {5 7→ 4}

end

Event trigger1 =̂

any

eid

when

grd1 : type = update

grd2 : table = EMPL

grd3 : eid ∈ dom(empl)

then

act1 : type := update

act3 : table := BONUS

act5 : bonus := {eid 7→ (pk bonus(eid) + 10)} ⊕ bonus

act5 : pk bonus(eid) := pk bonus(eid) + 10

end

Event trigger2 =̂

any

eid

when

grd1 : type = update

grd2 : table = BONUS

Appendix A. Event-B specification for Trigger example 131

grd3 : pk bonus(eid) ≥ 10

then

act1 : type := update

act2 : table := EMPL

act3 : empl := {eid 7→ (pk empl(eid) + 1)} ⊕ empl

end

END

Appendix B

Event-B specification of the ACC

system

This appendix contains full Event-B specification for checking context constraints of

ACC example in Chapter 4.

B.1 Context specification of ACC system

An Event-B Specification of Target

Creation Date: 3Jun2014 @ 10:19:23 AM

CONTEXT Target

CONSTANTS

TARGET DETECTION

INIT

MAX SPEED

INC

AXIOMS

axm1 : TARGET DETECTION = BOOL

132

Appendix B. Event-B specification of the ACC system 133

axm2 : INIT ∈ N

axm3 : MAX SPEED ∈ N

axm4 : INIT + INC < MAX SPEED

axm5 : INC ∈ N

END

B.2 Machine specification of ACC system

An Event-B Specification of ACC M0

Creation Date: 3Jun2014 @ 10:14:52 AM

MACHINE ACC M0

SEES Target

VARIABLES

speed

target det

INVARIANTS

inv1 : speed ∈ N

inv2 : target det ∈ TARGET DETECTION

inv3 : speed ≤ MAX SPEED

EVENTS

Initialisation

begin

act1 : speed := MAX SPEED

end

Event TargetDetected =̂

when

grd1 : target det = TRUE

grd2 : speed > INC

Appendix B. Event-B specification of the ACC system 134

then

act1 : speed := speed− INC

end

Event TargetUndetected =̂

when

grd1 : target det = FALSE

grd2 : speed < MAX SPEED− INC

then

act1 : speed := speed + INC

end

END

B.3 Extended context

CONTEXT Weather Road

EXTENDS Target

CONSTANTS

RAINING

SHARP

AXIOMS

axm1 : RAINING = BOOL

axm2 : SHARP = BOOL

END

B.4 Refined machine

MACHINE ACC M1

REFINES ACC M0

SEES Weather Road

Appendix B. Event-B specification of the ACC system 135

VARIABLES

isRain

speed

target det

isSharp

INVARIANTS

inv1 : isRain ∈ RAINING

cxt ct : isRain = TRUE ∨ isSharp = TRUE⇒ speed < MAX SPEED

inv3 : isSharp ∈ SHARP

EVENTS

Initialisation

begin

skip

end

Event TargetUndetected =̂

extends TargetUndetected

when

grd1 : target det = FALSE

grd2 : speed < MAX SPEED − INC

grd3 : isRain = FALSE

grd4 : isSharp = FALSE

then

act1 : speed := speed+ INC

end

Event RainSharp =̂

when

grd1 : isRain = TRUE ∨ isSharp = TRUE

then

act1 : speed := speed− INC

end

END

Appendix C

Event-B specifications and proof

obligations of Crane Controller

Example

This appendix contains full Event-B specification for checking safety and eventuality

properties of Crane Controller example in Chapter 5.

C.1 Context specification of Crane Controller sys-

tem

An Event-B Specification of Crane C0

Creation Date: 19May2014 @ 09:10:29 AM

CONTEXT Crane C0

SETS

POWER

HEDGES

F DISTANCE

CONSTANTS

fast

medium

zero

slow

quite

very

start

far

close

above

precise

AXIOMS

axm1 : partition(POWER, {fast}, {slow}, {zero})

axm2 : partition(HEDGES, {very}, {quite}, {precise})

axm6 : partition(F DISTANCE, {start}, {far}, {medium}, {close}, {above})

END

C.2 Extended context

An Event-B Specification of Extension

Creation Date: 19May2014 @ 09:10:29 AM

CONTEXT Crane C1

EXTENDS Crane C0

CONSTANTS

deg DIS

deg HED

deg POWER

AXIOMS

axm1 : deg POWER ∈ POWER→ N

axm2 : deg DIS ∈ F DISTANCE→ N

axm3 : deg HED ∈ HEDGES→ N

axm4 : deg HED(very) = 3 ∧ deg HED(quite) = 2 ∧ deg HED(precise) = 1

axm5 : deg DIS(start) = 4 ∧ deg DIS(far) = 3 ∧ deg DIS(medium) = 2 ∧

deg DIS(close) = 1 ∧ deg DIS(above) = 0

axm6 : deg POWER(fast) = 1 ∧ deg POWER(slow) = 2 ∧ deg POWER(zero) = 3

END

C.3 Machine specification of Crane Controller sys-

tem

An Event-B Specification of Crane M0

Creation Date: 19May2014 @ 09:10:29 AM

MACHINE Crane M0

SEES Crane C0

VARIABLES

speed

dist

INVARIANTS

inv2 : speed ∈ P(HEDGES× POWER)

inv3 : dist ∈ P(HEDGES× F DISTANCE)

inv4 : ran(dist) = {close}⇒ ¬ (ran(speed) = {fast})

EVENTS

Initialisation

begin

act1 : speed := {precise 7→ zero}

Appendix C. Event-B specifications and proof obligations of Crane Controller 139

act2 : dist := {precise 7→ start}

end

Event evt1 =̂

Status anticipated

when

grd1 : dist = {precise 7→ start}

then

act1 : speed := {precise 7→ fast}

act2 : dist := {precise 7→ far}

end

Event evt2 =̂

Status anticipated

when

grd1 : dist = {precise 7→ far}

then

act1 : speed := {quite 7→ fast}

act2 : dist := {precise 7→ medium}

end

Event evt3 =̂

Status anticipated

when

grd1 : dist = {precise 7→ medium}

then

act1 : speed := {precise 7→ slow}

act2 : dist := {precise 7→ close}

end

Event evt4 =̂

Status anticipated

when

grd1 : dist = {precise 7→ close}

then

act1 : dist := {precise 7→ above}

act2 : speed := {very 7→ slow}

end

Event evt5 =̂

Status anticipated

when

grd1 : dist = {precise 7→ above}

then

act1 : speed := {precise 7→ zero}

act2 : dist := {precise 7→ start}

end

END

C.4 Refined machine

An Event-B Specification of Refinement

Creation Date: 19May2014 @ 09:10:29 AM

MACHINE Crane M1

REFINES Crane M0

SEES Crane C1

VARIABLES

dist

speed

d

VARIANT

d

INVARIANTS

inv1 : d ∈ N

Appendix C. Event-B specifications and proof obligations of Crane Controller 141

DELF : d = deg DIS(above)⇒ d = deg DIS(start) ∨ d = deg DIS(far) ∨ d =

deg DIS(medium) ∨ d = deg DIS(close) ∨ d = deg DIS(above)

EVENTS

Initialisation

extended

begin

act1 : speed := {precise 7→ zero}

act2 : dist := {precise 7→ start}

act3 : d := deg DIS(start)

end

Event evt1 =̂

Status convergent

extends evt1

when

grd1 : dist = {precise 7→ start}

grd2 : d = deg DIS(start)

grd3 : ¬ d = deg DIS(above)

then

act1 : speed := {precise 7→ fast}

act2 : dist := {precise 7→ far}

act3 : d := deg DIS(far)

end

Event evt2 =̂

Status convergent

extends evt2

when

grd1 : dist = {precise 7→ far}

grd2 : ¬ d = deg DIS(above)

grd3 : d = deg DIS(far)

then

act1 : speed := {quite 7→ fast}

Appendix C. Event-B specifications and proof obligations of Crane Controller 142

act2 : dist := {precise 7→ medium}

act3 : d := d− (deg DIS(far)− deg DIS(medium))

end

Event evt3 =̂

Status convergent

extends evt3

when

grd1 : dist = {precise 7→ medium}

grd2 : ¬ d = deg DIS(above)

grd3 : d = deg DIS(medium)

then

act1 : speed := {precise 7→ slow}

act2 : dist := {precise 7→ close}

act3 : d := d− (deg DIS(medium)− deg DIS(close))

end

Event evt4 =̂

Status convergent

extends evt4

when

grd1 : dist = {precise 7→ close}

grd2 : ¬ d = deg DIS(above)

grd3 : d = deg DIS(close)

then

act1 : dist := {precise 7→ above}

act2 : speed := {very 7→ slow}

act3 : d := d− (deg DIS(close)− deg DIS(above))

end

Event evt5 =̂

Status convergent

extends evt5

Appendix C. Event-B specifications and proof obligations of Crane Controller 143

when

grd1 : dist = {precise 7→ above}

grd2 : ¬ d = deg DIS(above)

grd3 : d = deg DIS(above)

then

act1 : speed := {precise 7→ zero}

act2 : dist := {precise 7→ start}

act3 : d := d− (deg DIS(above)− deg DIS(start))

end

END

C.5 Proof obligations for checking the safety prop-

erty

In this section, we list all proof obligations of each event in machine Crane M 0 that

need to be proved to show the correctness of safety properties.

Table C.1: INV PO of event evt1
ran(dis) = {close} ⇒ ¬ran(speed) = {fast}
dis = {precise 7→ start} evt1/inv4/INV
`
ran ({precise 7→ far}) = {close} ⇒ ¬ran ({precise 7→ fast}) = {fast}

Table C.2: INV PO of event evt2
ran(dis) = {close} ⇒ ¬ran(speed) = {fast}
dis = {precise 7→ far} evt2/inv4/INV
`
ran ({precise 7→ medium}) = {close} ⇒ ¬ran ({quite 7→ fast}) = {fast}

Table C.3: INV PO of event evt3
ran(dis) = {close} ⇒ ¬ran(speed) = {fast}
dis = {precise 7→ medium} evt3/inv4/INV
`
ran ({precise 7→ close}) = {close} ⇒ ¬ran ({precise 7→ slow}) = {fast}

Appendix C. Event-B specifications and proof obligations of Crane Controller 144

Table C.4: INV PO of event evt5
ran(dis) = {close} ⇒ ¬ran(speed) = {fast}
dis = {precise 7→ above} evt5/inv4/INV
`
ran ({precise 7→ start}) = {close} ⇒ ¬ran ({precise 7→ zero}) = {fast}

C.6 Proof obligations for checking convergence prop-

erties

In this section, we list all proof obligations of each convergent event in machine

Crane M 1 that need to be proved to show the variant decreases after its execution

(VARPO) and has type of Natural number (NATPO).

Table C.5: VAR PO of event evt1
dis = {precise 7→ start}
d = deg DIS (start)
¬d = deg DIS (above) evt1/VAR
`
deg DIS (far) < d

Table C.6: NAT PO of event evt1
deg DIS ∈ F DISTANCE → N
dis = {precise 7→ start}
d = deg DIS (start)
¬d = deg DIS (above) evt1/NAT
`
d ∈ N

Table C.7: VAR PO of event evt2
dis = {precise 7→ far}
d = deg DIS (far)
¬d = deg DIS (above) evt2/VAR
`
d − (deg DIS (far)− deg DIS (medium)) < d

Appendix C. Event-B specifications and proof obligations of Crane Controller 145

Table C.8: NAT PO of event evt2
deg DIS ∈ F DISTANCE → N
dis = {precise 7→ far}
d = deg DIS (far)
¬d = deg DIS (above) evt2/NAT
`
`
d ∈ N

Table C.9: VAR PO of event evt3
dis = {precise 7→ medium}
¬d = deg DIS (close)
d = deg DIS (medium) evt3/VAR
`
d − (deg DIS (medium)− deg DIS (close)) < d

Table C.10: NAT PO of event evt3
deg DIS ∈ F DISTANCE → N
dis = {precise 7→ medium}
¬d = deg DIS (close)
d = deg DIS (medium) evt3/NAT
`
`
d ∈ N

Table C.11: VAR PO of event evt5
dis = {precise 7→ above}
¬d = deg DIS (above)
d = deg DIS (above) evt5/VAR
`
d − (deg DIS (above)− deg DIS (start)) < d

Table C.12: NAT PO of event evt5
deg DIS ∈ F DISTANCE → N
dis = {precise 7→ above}
¬d = deg DIS (above)
d = deg DIS (above) evt5/NAT
`
`
d ∈ N

VIETNAM NATIONAL UNIVERSITY, HANOI
UNIVERSITY OF ENGINEERING AND TECHNOLOGY

LÊ HỒNG ANH

METHODS FOR MODELING AND
VERIFYING EVENT-DRIVEN SYSTEMS

DOTORAL THESIS IN INFORMATION TECHNOLOGY

Hà Nội – 2015

D.1,I FIQC QUOC GIA I]A NQI

TRUONG D4,I HQC CONG NGHE

2 ^l
BANG KE NHAN TIEN

NQi dung: Tht Iao cho Ti6u ban cl6nh gi6 hd so chuy6n *0, .,iu thi sinh ildo t4o ti6n si dal1/2015

chuy6n ngdnh K! thuQt Vi6n thOng

STT Hg vi t6n Dcrn vi sii tiitn Ky nhfln

Nguy6n Qui5c Tu6n
, '.4Iruongueu Dan 200.000

2 Dinh TriAu Ducrng Thu (i 150.000

J Cht Dtlc Trinh Uj'vi0n 100.000

4 D{ng Th6 Ngec Uj'vi6n 100.000

5 Nguy6n Nam Hodng U! vi€n r00.000

cQng: b\D"aCI} /

r6ng sd tion bnng cnn:JcJJ ..:ltrtm..nira. .awci nghtn dCy crfu , (

Hd Ni.i, ngdy .li-thdng ..$ ndm 2015

NGrIdl DUYET rurT rnAcu DoN vl NGtId LAP BItu

1/il&
.s?t 6kwl uiy

SI]T' I{o vir t6n Eoa vi so5 tlan Kf nh4n

A kfutrut l-I.s'ilIN.A
Khautii-trI k flrlVf\i.

[hcn tll.r,i- k ..CNAld.

. [:iur-r l]#.j r"[rv/.Vrv..

i/tt,t Llil .€,t"

,/)-r) rn;tl ,Lk,thtrli
ll&YM.......L....

3

-5
r

,t{0 nL.:

,40r. n\' %"{2
4n,) 07it p[,b
4n rrti)k:"-'""'"--j - { I

Cdrag: 6 (U n,i ,l

Hd Not, ,goy .1,!'rlrang ,.#, ,au, zO,l i
ruq rndcu Dor{ vl NGuT r,T

:iu,

--Lytfr,LJ --J -)., .

l\y'f;ilttt /0's

NGUO] DUY]17

l.
2.
aJ.

4.

BANGxT csuNc TtICHTMUC: Nhfln x6t cria thdnh vi6n ti6u ban vC hO so chuy6n m6n

Nhfln x6t cta ti6u ban chuy6n ngdnh K! thuat phdn m0m 500.000 d

NhAn x6t cria tir5u ban chuy6n ngdnh HQ th6ng thdng tin ... 1.500.000 d

Nhfln x6t cria tirSu ban chuy€n ngdnh K! thuat vi6n th6ng 500.000 d

Nhfln x6t cta ti6u ban chuy6n ngdnh Vat Hgu vd linh ki6n nano 1.500.000 d

SO tien 4.000.000 d

(Vi6t blng chtr: B6n triQu d6ng chdn)

Kdm theo chimg ti g6c

Phu trr{ch don vi

W
Nguy6n Phuong Thfi

Ngudi rld nghi

Ducrng Dinh ThiQu

EAI HQC QUOC GIA HANQI

TRTJONG DAI HQC CONG NGHE

nAxc

NQi dung chi: Thir lao dgc hO so chuy0n

PhAn m0m

ru NHAN TIEN

m6n cria thi sinh dU thi Ti6n si, chuy6n ngdnh K! thu{t

Hg vh tOn Don vi
Chtfrc

trich HD
^r ..1
so uen Kf nh$ns't"l

1 PGS.TS. Truong Anh Hoing Khoa CNTT, Trudng DHCN
Tru&ng ti6u

ban
100,000 {

2 TS. T6 Vin Kh6nh Khoa CNTT, Truhng DHCN
Uy vi6n thu

ky
100,000 &

J PGS.TS. Truong Ninh Thufln Khoa CNTT, Trudng DHCN Uy vi6n 100,000 nU
4 TS. Pham Nggc Hing Khoa CNTT, Trudng DHCN uy vren 100,000 fr

"2-
.1_- (/

5 TS. D[ng Vin Hung Khoa CNTT, Trudng DHCN uy vlen 100,000 \PW
6

7

8

9

10

TONG CONG SDU.ooo

Bdng chtr:

NGI/OI DUYET

NIdv)1 t^,6,Y) q* ry crd;

PHU TRACH DON VI

Truons Ninh Thu6n

Hd Ni.i, ngdyl$ thdng * ndm 2015
NGI.IOI LAP

/r>-
Manh Phucrns Anh

DAI HQC QUOC GIA HA NQI

rRrIdNG EAr HQC CoNC NGHE

gANc rt NuAN TrEN

NQi dung chi: Thir lao dgc hO so chuy0n m6n cria thi sinh dU thi Tii5n si, chuy6n ngdnh HQ th6ng
th6ng tin

Hg vir tOn Eon vi Chric
trich HE

s6 tidn Kf nh$nS'I"I

I IS. Nguy6n Nggc H6a Khoa CNTT, Trudng DHCN
Trucrng ti6u

ban
300,000 \}L

2 PGS.TS. Nguy6n Tri Thinh Khoa CNTT, Trudng DHCN
Uy vi6n thu

kv
300,000 IM

J PGS.TS. Nguy6n Hdi Chdu Khoa CNTT, Trudng DHCN uy vlen 300,000 ,ily'
I b//

4 PGS.TS. Nguy6n Hd Nam Khoa CNTT, Trudng DHCN Uy vi6n 300,000

5 PGS.TS. Hd Quang Thpy Khoa CNTT, Truhng DHCN Uy vi6n 300,000 hfl&.
6

7

8

9

l0

TONG CONG lsDo,o0o

g chii: ttt6t t\rqur nd.r"' tr,uv," q,,*

Ncr-for DUYT.T rnq rnAcH DoN vl
Hd N|| ngdflLthdng\ ndm 2015

NGIJO] LAP

I
/ry--

Manh Phuo'ns Anh

IU
Truo'ng Ninh Thuin

DAI HQC QU6C GIA HA NQI

TRTIONG D4,I HQC CONG NGHE

, ^l

BANG KE NHAN TIEN
NQi dung: NhQn x6t cta c6c thdnh vi€n TiiSu ban d6nh gi6 hO so chuy6n mdn ctra thi sinh tldo t4o ti6n si

dqt U2Ol5 chuy6n ngdnh K! thuflt Vi6n th6ng

Tru&ng ti6u ban

Uj'vi€n 100.000

Nguy6n Qu6c Tu6n

Dinh Tridu Duong

Drlc Trinh

Nguy6n Nam Hodng

Hd N1.i, ngdy clJthdnffi. ndm 2015

NGU,fl DUYET {ug rnAcH DoN vI NGtTd LAP BIEU

)frw-
'!si {iktdt 'fj'V

EAI HQC QUOC GlA 11A NQl

TIIUOI\G EAI I{OC COI']G I'IGHE,

BAI\{G r<e mm4-I-{ TIEN

r\Qi rlurg.r.i: .Ltu,r.,. L*i...frlviit .x(.l. .Cr*i.hrri..k,r dckf .7'r""i'{"(e'{xyn ns*"

I{o vh tdn

raog ra trdn uing .1,*, ..N{6.[Ju;ii...llrtn.l...Jtr.,nf... nt1at.r..iltft1....,.....]........'J"r

Hd Noi, ngay /[." thdng ./t, nam 20;l{

NGUCI l4r rrruNGIJOI DUY]]T rfnu rn*icu DoN vI

Urotf,'i
ini'7{o'g

CO.I.IG HOA XA HqI CHU NCHIA VIET NAM

'u- li.: :Ii,T; Y:: :-*.

cnAv rs[mi{ Iqt{AN

Ikd Noi, ngdY?'lthdng '?ndm 20-/s*

Xic nh$n chi l{gtrbi giao fidxr Ngu'oi nh$n tiirn

.MiltL- -

-r) p. n/rt)

BANG rf cnUNc rtIcruMUC: Phuc vu Ti6u ban chuy6n m6n sinh ddo t4o titin si dgt

n5m 2015 hqP

l. PhUc vu c6c chuy6n nginh KTPM, HTTT......

2. Phpc vp chuy6n ngdnh K! thuat vi6n th6ng

3. Phpc 4r chuy6n ngdnh Vat ligu vd linh kiQn nano

4. Phgc vu c6c chuy€n ngdnh

Ni6t bing chii: Sdu trdm nghin d6ng chdn)

Kdm theo chimg tir gdc

Phg trrich ilon vi

Nguy6n Phuong Thii

150.000 d

75.000 d

7s.000 d

300.000 d

SO tl6n 600.000 d

Nguiri tld nghi

1, I'W-
/ ,F--'/-."-

Duong Dinh ThiQu

CQNG noa xA HQI CI{U lotCHIa VEr NAM

."li:.liT;iTi:--.

crAv sxww NHAN

X6c nhfn chi F{gu'df; giao tri6m

Hd N1ri, ngaylZthdne * ndm 204{

hlgnrdi mhflm fi6m

Co. NG HOA X,Ii. HQI CI{U NCUiA VE NAM

EQc tftP - Tqr do - In4mh Phtfrc

o 0 o ---------

Gr,&v BXEN NK{&N

M nkn*

" Wtfir---

l\guo'i giao tiAm

-d)itnyr *,1i d,,;

Xic nhfn chi

wyilrtuyk{

co. NG uoe >rA HQI clru ucrfia vE:r NAM

"u- :::.:_i-" ll; :_::':--'
-"

GIAY rBrfiN NHAN

Xic nhfln chi

IId Noi, ngay?.4ltang.lndm 20/ 9
hlguoi nh$n tiiin

dqfiuAW

cQNG FIoA xA HqI cF{u Ncuia vIET NAM

D$c t$P - T'E do - II4mh Phtftc

o 0 o ---------

GIAV B[fiN NH&N

ronr6i ,u, ...0r*\, drit ..If*i...
Dlachi: rffi .dr; @...:.......".'.."..'.'-..."....'
Dign thoai:

TOi de nhfln cria:"'.'.'...'..

s5 ticn:)nP.,,.nm

funrch{i:&.r....hrk...oq/,,i.....t5;;../r;: """"""" """)
:;;,"': ii;t;, ;- ;li ;i:,.,i *6t v ut nsdtu rttlr r/a'"5n olsp

I{gtroi giao tiAn

Pln'^'^*-
"n i. rfi;

IXd N1li, ngdy??thdngfi. ndm ZO/ {
I'{guoi m[rfin ti0n

il)1,N^:--
,/t' fl'd ffi M'tz';

Xic nhfn chi hlgudri giao tidm

	dissertation.pdf
	Declaration of Authorship
	Abstract
	Acknowledgements
	Table of Contents
	List of Abbreviations
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Literature review
	1.4 Contributions
	1.5 Thesis structure

	2 Backgrounds
	2.1 Temporal logic
	2.2 Classical set theory
	2.3 Fuzzy sets and Fuzzy If-Then rules
	2.3.1 Fuzzy sets
	2.3.2 Fuzzy If-Then rules

	2.4 Formal methods
	2.4.1 VDM
	2.4.2 Z
	2.4.3 B method

	2.5 Event-B
	2.5.1 An overview
	2.5.2 Event-B context
	2.5.3 Event-B Machine
	2.5.4 Event-B mathematical language
	2.5.5 Refinement
	2.5.6 Proof obligations

	2.6 Rodin tool
	2.7 Event-driven systems
	2.7.1 Event-driven architecture
	2.7.2 Database systems and database triggers
	2.7.3 Context-aware systems

	2.8 Chapter conclusions

	3 Modeling and verifying database trigger systems
	3.1 Introduction
	3.2 Related work
	3.3 Modeling and verifying database triggers system
	3.3.1 Modeling database systems
	3.3.2 Formalizing triggers
	3.3.3 Verifying system properties

	3.4 A case study: Human resources management application
	3.4.1 Scenario description
	3.4.2 Scenario modeling
	3.4.3 Checking properties

	3.5 Support tool: Trigger2B
	3.5.1 Architecture
	3.5.2 Implementation

	3.6 Chapter conclusions

	4 Modeling and verifying context-aware systems
	4.1 Introduction
	4.2 Related work
	4.3 Formalizing context awareness
	4.3.1 Set representation of context awareness
	4.3.2 Modeling context-aware system
	4.3.3 Incremental modeling using refinement

	4.4 A case study: Adaptive Cruise Control system
	4.4.1 Initial description
	4.4.2 Modeling ACC system
	4.4.3 Refinement: Adding weather and road sensors
	4.4.4 Verifying the system's properties

	4.5 Chapter conclusions

	5 Modeling and verifying imprecise system requirements
	5.1 Introduction
	5.2 Related work
	5.3 Modeling fuzzy requirements
	5.3.1 Representation of fuzzy terms in classical sets
	5.3.2 Modeling discrete states
	5.3.3 Modeling continuous behavior

	5.4 Verifying safety and eventuality properties
	5.4.1 Convergence in Event-B
	5.4.2 Safety and eventuality analysis in Event-B
	5.4.3 Verifying safety properties
	5.4.4 Verifying eventuality properties

	5.5 A case study: Container Crane Control
	5.5.1 Scenario description
	5.5.2 Modeling the Crane Container Control system
	5.5.2.1 Modeling discrete behavior
	5.5.2.2 First Refinement: Modeling continuous behavior
	5.5.2.3 Second Refinement: Modeling eventuality property

	5.5.3 Checking properties

	5.6 Chapter conclusions

	6 Conclusions
	6.1 Achievements
	6.2 Limitations
	6.3 Future work

	List of Publications
	Bibliography
	A Event-B specification of Trigger example
	A.1 Context specification of Trigger example
	A.2 Machine specification of Trigger example

	B Event-B specification of the ACC system
	B.1 Context specification of ACC system
	B.2 Machine specification of ACC system
	B.3 Extended context
	B.4 Refined machine

	C Event-B specifications and proof obligations of Crane Controller Example
	C.1 Context specification of Crane Controller system
	C.2 Extended context
	C.3 Machine specification of Crane Controller system
	C.4 Refined machine
	C.5 Proof obligations for checking the safety property
	C.6 Proof obligations for checking convergence properties

