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Chapter 1. Introduction
1.1 Motivation

Modeling is one of effective ways to handle the complexity of software development

that allows to design and assess the system requirements. Modeling not only repre-

sents the content visually but also provides textual content. Testing techniques can

be used in normal development in order to check whether the software execution

satisfies users requirements. However, testing is always an incomplete validation be-

cause it can only identifies errors in some cases but can not ensure that the software

execution is correct in all cases. Software verification is one of powerful methods

to find or mathematically prove the absent of software errors. Several techniques

and methods have been proposed for software verification such as model-checking,

theorem-proving and program analysis. Among these techniques, theorem proving

has distinct advantages such as superior size of the system and its ability to reason

inductively. Though, theorem proving often generates a lot of proofs which are com-

plex to understand. On the other hand, software architecture is a concept proposed

a way to effectively build complex software systems. A typical type of software

architecture or design styles usually has several suitable modeling and verification

methods.

Event-driven architecture is one of the most popular architectures in software project

development providing implicit invocation instead of invoking routines directly such

that each component can produce events, the system then invoke all procedures

registered with these events. It is a promising architecture to develop and model

loosely coupled systems and its advantages have been recognized in both academia

and industry. There are many types of event-driven systems including many ed-

itors where user interface events signify editing commands, rule-based production

systems which are used in AI where a condition becoming true causes an action

to be triggered, and active objects where changing a value of an object’s attribute

triggers some actions. In event-driven architectures, Event-Condition-Action (ECA)

rules are proposed as a declarative approach to specify relations when certain events

occur at predefined conditions. An ECA rule has the form: On Event IF conditions

DO actions that means when Events occurs, if conditions holds, then actions is

performed. We also can informally represent it by if-then rules such as if Events

occurs and condition holds, then perform action. The advantages of this approach

have been applied and incorporated in various application domains such as active

database systems, context-aware applications. There are a huge amount of stud-

ies working on analysing event-driven systems as well as formalizing ECA rules.

The existing methods for modeling and verification of general event-driven systems
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2 Chapter 1 Introduction

are insufficient because we often develop particular types of event-driven systems

which use ECA rules to react to raise events, e.g., active databases and context-

aware systems. Furthermore, almost existing work of software verification focuses

on analysing precise descriptions of required functionality and behavior of the sys-

tem. For these reasons, new methods or approaches to modeling and verifying such

systems are desirable. Moreover, if we can verify significant properties of the system

at early stage of design time, it will reduce cost of development. It is also beneficial

if it reduces the complexity of proving and is practical in software development.

The thesis proposes novel methods to achieve that desire by using Event-B formal

method. Event-B notations are based on set theory, generalized substitutions and

the first order logic. It is more suitable for developing large reactive and distributed

systems. The consistency of each model and the relationship between an abstract

model and its refinements are obtained by formal proofs. Support tools have been

provided for Event-B specification and proof in the Rodin platform. Hence, Event-B

is totally matched for modeling and verifying event-driven systems.

1.2 Objectives

The thesis aims to provide new and effective approaches in comparison with existing

work. Instead of working on analysing a general event-driven system or proposing

any new formal language of ECA, we focus on modeling and verifying specific do-

main applications of the event-driven architecture such as database systems and

context-aware systems using Event-B. The thesis proposes effective methods which

not only model the behavior of these systems which are described by If-Then rules

(ECA rules) but also formalize significant properties by Event-B constructs. The

correctness of these properties are proved mathematically by proving the Event-B

generated proof obligations. The Rodin tool is used for supporting modeling and

verification process to reduce the complexity with automatic proving. The thesis di-

rects at providing tools which support for automatic translation to make less effort

in modeling process. The thesis has another objective to analyse event-driven sys-

tems whose behavior is described by imprecise requirements (represented by Fuzzy

If-Then rules). The thesis introduces a new refinement-based method for modeling

and verifying both safety and eventuality properties of such systems.

1.3 Contributions

1. This thesis introduces a new method to model and verify a database system with

triggers by using Event-B. This approach provides detailed steps to translate

database concepts to Event-B notations. The translation is based on the similarity

between triggers which has the form of ECA rules and Event-B events. With the

proposed method, constraint preservation properties are verified and infinite loops

are detected by formal proofs. The method reduces cost of development because

it can detect errors at early design phase and it is easy to apply in practice. A



tool partly supports for transforming a database systems with triggers is also

developed.

2. The thesis continues investigating the benefit of similar acts between ECA rules

and Event-B event to propose a method to model and verify context-aware sys-

tems. Furthermore, the thesis recognizes the advantages of Event-B refinement

mechanism to make proposed methods suitable for incremental modeling. Signif-

icant properties such as context constraint preservation are defined as invariants

and can be checked automatically using the supporting tool Rodin.

3. We handle the case that a system is described by imprecise requirements. Its

behavior rules are now specified in the form of Fuzzy If-Then rules. The thesis

introduces a new representation of fuzzy terms by classical sets and present a set

of rules to translate Fuzzy If-Then rules to Event-B constructs. We also make an

extension by introducing timed Fuzzy If-Then rules to model a timed system.

4. The thesis makes use of Event-B refinement and some existing reasoning methods

to analyse some significant properties of imprecise system requirements such as

safety and eventuality properties.

1.4 Thesis structure

The remainder of this thesis structured in Figure 1.1. Chapter 2 provides necessary

backgrounds for the thesis. Chapter 3 introduces a new method for modeling and

verifying database systems. Chapter 4 focuses on modeling and verifying context-

aware systems. In Chapter 5, we present new modeling methods for modeling and

verifying event-driven systems described by imprecise requirements. Chapter 6 sum-

marizes the thesis and present future work.

Modeling and verifying database triggers systems

Backgrounds

(Chapter 2)

                      (Chapter 3)

Modeling and verifying context−aware systems

                              (Chapter 4)

                                        (Chapter 5)

Modeling and verifying imprecise systems requirements

Two types of event−driven systems with precise requirements  using ECA structure

Event−driven systems with imprecise requirements described by Fuzzy If−Then rules

Conclusions
(Chapter 6)

Figure 1.1: Thesis structure
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4 Chapter 2 Backgrounds

Chapter 2. Backgrounds
2.1 Temporal logic

Propositional temporal logic (PTL) extends the descriptive power of propositional

logic to describe a sequence of states in different moment of time called time instant.

The basic element of temporal logic language is a state formula P which is any first-

order logic formula. It is built from atomic predicates; the quantifiers ∃, ∀; the

logical operators such as ∧, ∨ , and ¬; and the “temporal” operators such as �
(“always”),♦ (“eventually”), ◦ (“next”), and U (“until”).

2.2 Classical set theory

The language of set theory is based on a single fundamental relation, called member-

ship. a is said to be a member of B (denoted by a ∈ B), it means that B contains

a as an element. There are some basic definitions of set theory such as power set,

relations, functions, etc.

2.3 Fuzzy sets and Fuzzy If-Then rules

In order to deal with systems which are too complex or too ill-defined to admit of

precise descriptions, Zadeh introduced a logic framework which is not traditional

two-valued, but multi-valued logics whose values are interpreted by Fuzzy sets.

A fuzzy set F defined on an universal set X is represented as a pair as follows:

F = {(x , µF (x ))} where x ∈ X and µF (x ) : X → [0, 1] is termed as the grade of

membership of x in F. A fuzzy hedge is an operator which transforms the fuzzy

set F (x ) into the fuzzy set F (hx ). The hedges are the functions that generate a

larger set of values for linguistic variables. Fuzzy If-Then rules, written in a simple

form: “If a is A then b is B”, play an important role in fuzzy sets. It provides an

approach to analysing imprecise description of systems. We usually use these rules

for describing the behavior of such systems.

2.4 Formal methods

Formal methods which can be used to specify and verify systems mathematically.

A method is formal if it has well-defined mathematics basis, typically given by a

formal specification language. The thesis uses Event-B formal method to model and

verify event-driven systems. Hence, before introducing it we briefly present several

different formal methods which inspire Event-B’s ideas such as VDM, Z, B.

2.4.1 VDM

VDM stands for “The Vienna Development Method” which is a model-based method

giving descriptions of software systems and other systems as models. Models are

specified as objects and operations on objects, where the objects represent input,

output, and internal state of the system. It consists of a model-oriented specification

language called VDM-SL. It means that a specification in VDM-SL consists of a



Chapter 2 Backgrounds 5

mathematical model built from simple data types like sets, lists and mappings,

along with operations which change the state of the model. VDM-SL has a formally

defined semantics. The logic underlying this semantics is based on the Logic of

Partial Functions (LPF).

2.4.2 Z

The Z notation is based upon set theory and first-order predicate calculus. Every

object in the mathematical language has a unique type, represented as a maximal

set in the current specification. One aspect of Z is the use of natural language. It

uses mathematics to state the problem, to discover solutions, and to prove that the

chosen design meets the specification. Z provides refinement mechanism that allows

to develop the system gradually. A Z specification document consists of interleaved

passages of formal, mathematical text and informal explanation.

2.4.3 B method

B is a method for specifying, designing, and coding software systems. The main idea

of B is to start with a very abstract model of the system under development and

gradually add details by building a sequence of more concrete models. B provides

the concept of an abstract machine which encapsulates a set of mathematical items,

constants, sets, variables and a collection of operations on these variables. These

elements are contained in a named modules which can be viewed or used in other

modules.

2.5 Event-B

Event-B is a formal method for system-level modeling and analysis. Key features

of Event-B are the use of set theory as a modeling notation, the use of refinement

to represent systems at different abstraction levels and the use of mathematical

proof to verify consistency between refinement levels . A basic structure of an

Event-B model consists of MACHINE and CONTEXT. An Event B CONTEXT

describes a static part where all the relevant properties and hypotheses are defined.

A CONTEXT consists of carrier sets, constants, axioms. Carrier sets, denoted by

s , are represented by their names, and are non-empty. Different carrier sets are

completely independent. The constants c are defined by means of a number of

axioms P(s , c) also depending on the carrier sets s . A MACHINE is defined by a

set of clauses. A machine is composed of variables, invariants, theorems and events.

Variables v are representing states of the model. Invariants I (v) yield the laws that

state variables v must always be satisfied. Events E (v) present transitions between

states. Each event has the form evt = any x where G(x , v) then A(x , v , v ′) end

where x are local variables of the event, G(x , v) is a guard condition and A(x , v , v ′)

is an action. An event is enabled when its guard condition is satisfied. The event

action consists of one or more assignments. We have three kinds of assignments:

(1) a deterministic multiple assignment (x := E (t , v)), (2) an empty assignment

(skip), or (3) a non-deterministic multiple assignment (x :| P(t , v , x ′)). To deal
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with complexity in modeling systems, Event-B provides a refinement mechanism

that allows us to build the system gradually by adding more details to get more

precise model. In superposition refinement, the abstract variables are retained in

the concrete machine, with possibly some additional variables. In vertical refinement

such as data refinement, the abstract variables v are replaced by concrete ones w .

Subsequently, the connections between them are represented by the relationship

between v and w , i.e. gluing invariants J (v ,w). In order to check if a machine

satisfies a collection of specified properties, Event-B defines proof obligations (POs)

which we must prove. Some of the proof obligations relevant to thesis are invariant

preservation (INV), convergence (VAR), deadlock-freeness (DLKF).

2.6 Rodin tool

This thesis uses the RODIN toolkit version 2.8 which is an Eclipse environment for

modeling and proving in Event-B. The Rodin tool provides a rich of perspective

windows to users to develop Event-B models easily. The proof obligations of the

model are generated automatically. Rodin provides both automatic proving and

interactive proving mechanisms.

2.7 Event-driven systems

There are many types of event-driven systems including software user interfaces,

rule-based production systems which are used in AI where a condition becoming true

causes an action to be triggered, and active objects where changing a value of an

object’s attribute triggers some actions. In this thesis, we consider two applications

of active objects and rule-based production systems: active databases and context-

aware systems.

2.7.1 Database systems and database triggers

Modern relational database systems include active rules as database triggers which

response to events occurring inside and outside of the database. Database trigger

is a block code that is automatically fired in response to an defined event in the

database. The event is related to a specific data manipulation of the database such

as inserting, deleting or updating a row of a table. Triggers are commonly used in

some cases: to audit the process, to automatically perform an action, to implement

complex business rules. The structure of a trigger follows ECA structure, hence it

takes the following form: rule name:: Event(e) IF condition DO action. Database

triggers can be mainly classified by two kind: Data Manipulation Language(DML)

and Data Definition Language (DDL) triggers. The former is executed when data is

manipulated, while in some database systems, the latter is fired in response to DDL

events such as creating table or events such as login, commit, roll-back, etc.

2.7.2 Context-aware systems

The term “context-aware” was first introduced by Bill Schilit, he defined contexts

as location, identities of objects and changes of those objects to applications that



then adapt themselves to the context. Many works have been focused on defining

terms of context awareness. In this thesis, we focus on a context-aware system

which directly use contextual data from physical sensors. The system senses many

kinds of contexts in its working environment such as position, acceleration of the

vehicle and/or temperature, weather, humidity, etc. Processing of the system is

context-dependent, i.e. it reacts to the context changes.

Chapter 3. Modeling and verifying database

trigger systems
3.1 Introduction

A trigger is made of a block of code and has a syntax. It is human readable and

does not have any formal semantic. Therefore, we can only check if a trigger con-

flicts to data constraints or leads to a infinite loop after executing it or with human

inspection step by step. Hence, research work on a formal framework for modeling

and verifying database triggers are desirable. Moreover, it is valuable if we can show

that triggers execution is correct at the design time because it reduces the cost of

database application development. In this chapter, we propose a new method to

formalize and verify database triggers system using Event-B at early design phase.

The main idea of the method comes from the similar structure and working mecha-

nism of Event-B events and database triggers. First, we propose a set of translation

rules to translate a database system including triggers to an Event-B model. In the

next step, we can formally check if the system satisfies data constraints preservation

and find critical errors such as infinite loops by proving the proof obligations of the

translated Event-B model. The advantage of our method is that a real database

system including triggers and constraints can be modeled naturally by Event-B con-

structs such as invariants and events . The method also makes use of Event-B proof

obligations to prove some important properties of the systems. It is valuable es-

pecially for database application development since we are able to ensure that the

trigger systems avoid the critical issues at the design time. With the supporting

tool Rodin, almost proofs are discharged automatically, hence it reduces complexity

in comparison to manual proving. We implement a tool called Trigger2B following

the main idea to transform a database trigger model to a partial Event-B model

automatically. It also overcomes one of disadvantages that makes formal methods

absent in the database development process because of the modeling complexity.

3.2 Modeling and verifying database triggers system

3.2.1 Modeling database systems

A database system is normally designed by several elements such as tables (or views)

with integrity constraints and triggers. Whenever users modify the database table

7



8 Chapter 3 Modeling and verifying database trigger systems

contents, i.e. executing Insert, Delete and Update statements, this data modification

can fire the corresponding triggers and should be conformed to constraints. The

translation rules are summarized in Table 3.1.
Table 3.1: Translation rules between database and Event-B

Database definitions Event-B concepts

Rule 1. db = 〈T ,C ,G〉 DB M ,DB C

Rule 2 t = 〈r1, .., rm〉 T = TYPE1 × TYPE2 × TYPEn

Rule 3 ri = 〈fi1, .., fin〉 t ∈ P(T )

Rule 4 Primary key constraint f : TYPE1 7 7→ T

Rule 5 Constraint C Invariant I

Rule 6 Trigger E Event Evt

3.2.2 Formalizing triggers

As illustrated in Table 3.2, a trigger is translated to an Event-B event where con-

junction of trigger’s type and its condition is the guard of the event. The action of

the trigger is translated to the body part of an Event-B event. We assume that it

contains a single DML statement such as delete, insert, update. The encoding of

the trigger action is illustrated in Table 3.3
Table 3.2: Formalizing a trigger by an Event-B Event

IF (e)
ON (c) WHEN (e ∧ c)

ACTION (a) THEN (a) END

3.2.3 Verifying system properties

After the transformation, taking advantages of Event-B method and its support

tool, we are able to verify some properties of the database system model as follows:

• Infinite loop: Since a trigger can fire the other triggers, hence it probably leads to

infinite loop. This situation occurs when the state of the system does not change

after a sequence of events. With the proposed method, there are two ways to

check this property of the system. The first one use deadlock-freeness (DLKF)

proof obligation of Event-B which states that the disjunction of the event guards

always hold under the properties of the constant and the invariant. The deadlock

Table 3.3: Encoding trigger actions
ANY r

INSERT INTO T WHEN (r ∈ T ∧ e ∧ c)

VALUES (value1,..,valuen) THEN T := T ∪ r

end
ANY v

DELETE FROM T WHEN (v ∈ TYPE1 ∧ e ∧ c)

WHERE 〈column1 = some value〉 THEN t := t − f (v)

end
ANY v1, v2

UPDATE T WHEN v1 ∈ TYPE1 ∧ v2 ∈ TYPE2 ∧ e ∧ c

SET column1=value, column2=value2 THEN t := {1 7→ value1, 2 7→ value2} ⊕ t

WHERE 〈column1 = some value〉 end
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freedom rule is stated as I (v),P(c) ` G1(v) ∨ ... ∨ Gn(v), where v is variable,

I (v) denotes invariant, Gi(v) presents guard of the event. In some cases, DLKF

theorem can not be deduced from a set of invariant I (v) and constant predicates.

We will prove that there is always at least one event executes at a time by showing

that the disjunction of the events’ guards are always true before and after event

execution.

• Constraint preservation: With the proposed translation method, a trigger does

not break these rules if I (v),G(w , v), S (w , v , v ′) ` I (v ′). This is also the INV

proof obligation of Event-B events.

3.3 A case study: Human resources management application

3.3.1 Scenario description

A database system of a human resource application has two tables EMPLOYEES

(including id and level columns) and BONUS (including id and amount columns).

The database system has a constraint: The bonus of an employee with a level

greater than 5 is at least 10. It includes two triggers doing the following tasks:

Trigger 1. Whenever the level of employee is updated, his bonus is increased by 10.

Trigger 2. If the employee’s bonus is updated with amount that is greater than 10 ,

then his level is increased by 1.

3.3.2 Modeling the scenario

The Event-B specification of the example is partly shown in Figure 3.1, Figure 3.2,

Figure 3.3.

CONTEXT TRIGGER C

SETS

TYPES

TABLE NAMES

CONSTANTS

TBL EMPL

TBL BONUS

AXIOMS

axm1 : partition(TYPES, {insert}, {update}, {delete})
axm2 : TBL EMPL = N× N
axm3 : TBL BONUS = N× N
axm4 : partition(TABLE NAMES, {employees}, {bonus})

END

Figure 3.1: A part of Event-B Context

3.3.3 Checking properties

• Constraint preservation: Since the constraint property of the system is modeled

by the invariant

SYS CTR : ∀ eid .eid ∈ dom(empl) ∧ pk empl(eid) > 5⇒ pk bonus(eid) > 10.

We need to prove that the invariant is maintained before and after events exe-

cution. The proof obligation of trigger1 is illustrated in Table 3.4. Two events
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MACHINE TRIGGER M

SEES TRIGGER C

VARIABLES

bonus

empl

f bonus

f empl

type

INVARIANTS

inv1 : bonus ∈ P (TBL BONUS)

inv2 : empl ∈ P (TBL EMPL)

inv3 : type ∈ TYPES

inv4 : f bonus ∈ N 7 7→ N
inv5 : f empl ∈ N 7 7→ N
SYS CTR : ∀ eid.eid ∈ dom(empl) ∧ pk empl(eid) > 5⇒ pk bonus(eid) > 10

INF LOOP : (type = update ∧ table = BONUS) ∨ (type = update ∧ table =
EMPL)

END

Figure 3.2: A part of Event-B machine

Event trigger1 =̂

any
eid

when
grd1 : type = update

grd2 : table = EMPL

grd3 : eid ∈ dom(empl)
then

act1 : type := update

act3 : table := BONUS

act5 : bonus := {eid 7→ (pk bonus(eid) + 10)} ⊕ bonus

act5 : pk bonus(eid) := pk bonus(eid) + 10

end

Event trigger2 =̂

any
eid

when
grd1 : type = update

grd2 : table = BONUS

grd3 : pk bonus(eid) ≥ 10

then
act1 : type := update

act2 : table := EMPL

act3 : empl := {eid 7→ (pk empl(eid) + 1)} ⊕ empl

end

Figure 3.3: Encoding trigger

Trigger1 and Trigger2 of the machine DB M generate two proof obligations called

trigger1/SYS CTR/INV, trigger2/SYS CTR/INV respectively.

• Infinite loop: In Section 3.2.3, we proposed that a invariant INF LOOP which is

the disjunction of the event’s guards is added to the target machine. If we show

that this invariant is preserved by machine DB M 0, then two triggers execution
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Table 3.4: Proof obligation of constraint preservation
∀ nid .nid ∈ dom(empl rec) ∧ pk empl(nid) > 5⇒ pk bonus(nid) > 10
emplid ∈ dom(empl rec)
type = update trigger1/
table = EMPL SYS CTR/
` INV
∀ nid .nid ∈ dom(empl rec) ∧ pk empl(nid) > 5
⇒ (pk bonus ⊕ {emplid 7→ pk bonus(emplid) + 10})(nid) > 10

leads to the infinite loop. The proof clause of the event trigger1 is presented in

Table 3.5.
Table 3.5: Proof obligation of innifte loop

∀ nid .(nid ∈ dom(empl rec) ∧
type = update ∧ table = BONUS ∧
pk bonus(nid) > 10) ∨ (type = update ∧ table = EMPL)) ∧
emplid ∈ dom(bonus rec)
table = BONUS ∧ pk bonus(emplid) > 10 trigger1
` /INF LOOP
∀ nid .(nid ∈ dom({emplid 7→ pk empl(emplid) + 1} ⊕ empl rec) ∧ /INV
update = update ∧ EMPL = BONUS ∧
pk bonus(nid) > 10) ∨
(update = update ∧ EMPL = EMPL)

3.4 Support tool: Trigger2B

Following the method presented in Section 3.2, we implement a supporting tool

called Trigger2B that generates multiples XML-based format as the output. These

files are then able to be used in the support tool Rodin.

3.4.1 Architecture

The architecture of this tool consisting five modules is illustrated in Figure 3.4.

Figure 3.4: Architecture of Trigger2B tool

Main components of Trigger2B tool work as follows:

• DBAdapter: Manipulates relational database systems to get information about

the database which will be modeled such as existing tables, triggers.

• Trigger Builder: Allows users to create new triggers based on the chosen database.

• SQLParser: Parses the trigger body to extract necessary elements, e.g. type and

table names of SQL statements, for modeling.

• Modeling Component: Performs some tasks to build a corresponding Event-B

model.

• Serialization: Serialize the translated Event-B model to XML-based files such

as Rodin Event-B components files.



3.4.2 Implementation

The heart of this tool is the modeling component which includes algorithms following

the proposed translation rules to translate database concepts to Event-B constructs.

The input of this component is the out put of SQLParser component which currently

uses ANLTR framework to parse sql statements. A parsed tree of general triggers

is partially illustrated in Figure 3.5.

create trigger

trigger body

〈DMLStatement〉

expr=column namequalified table〈action〉

trigger event

table name

name

column name

name

〈action〉

trigger name

name

Figure 3.5: A partial parsed tree syntax of a general trigger

We propose an algorithm following our proposed translation rules to transform the

parsed tree to an Event-B model. The algorithm is illustrated as follows:

Input: Parsed syntax tree(t)

Output: Event-B machine (M )

1 begin

2 node = root(t)

3 while (isVisited(node))

4 if node.type = create trigger then

5 e=createNewEvent(M)

6 if node.type = trigger name then

7 e.name = node.name

8 elseif node.type = trigger event

9 for child in nodes.childs

10 if node.type = action then

11 addGuard(e,type=node.value)

12 if node.type = tabletable name then

13 addGuard(e,table=node.child.value)

14 elseif node.type = trigger body

15 addAction(e,getExp(node.childs))

16 end

17 visit next(node)

18 end

12
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Chapter 4. Modeling and verifying context-

aware systems
4.1 Introduction

Context awareness of an application relates to adaptation, responsiveness, sensitive-

ness of the application to changes of the context. In a narrow view, a context-aware

system is somehow considered as an event-driven system, i.e. it receives events

emitted by context changes and responses to these changes with the providing con-

text knowledge. The behavior of context-ware systems is often complex and un-

certain. The results up to date have worked on modeling context awareness with

various approaches such as object role modeling, ontology based modeling, logic

based modeling. They also have proposed several frameworks for context model-

ing. However, to the best of our knowledge, there does not exist an approach that

models context awareness in several aspects such as events of environments, context

rules and uncertainty. Furthermore, the resulted model can be formally verified to

ensure the correctness of the system. In this chapter, we propose to use Event-B

as a formal method to model and verify context-aware systems. The contributions

of our proposal are: (1) Natural representation of context-aware systems by Event-

B concepts. A set of translation rules are proposed to define context awareness

components formally. It is a refinement-based method allowing to construct the

system gradually (2) After formalization, significant properties are verified via proof

obligations of refinement mechanism automatically (or interactively) without any

intermediate transformation.

4.2 Formalizing context awareness

4.2.1 Modeling context-aware system

Translation rules between a context-aware system and an Event-B model are pre-

sented in Table 4.1
Table 4.1: Transformation between context-aware systems and Event-B notations

Context-aware concepts Event-B notations
Rule 1 Context data CD Sets, Constants
Rule 2 Context rules r = 〈e, c, a〉 Events
Rule 3 Environments triggers E Events
Rule 4 Context constraints CC Invariants

4.2.2 Incremental modeling using refinement

In fact, the development of context-aware systems often starts from the scratch re-

quirements, then it is built gradually when we have new requirements about context

entities and reasoning. For example, more sensors are attached in the system to

get various kind of context data. The system also has more context rules to handle

with these data. The updated system still has to satisfy context constraints which
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has been established. Therefore, it requires to have a suitable modeling method for

incremental development. Figure 4.1 depicts a incremental modeling method which

is based on the proposed method in Section 4.2.1.

Figure 4.1: Incremental modeling using refinement

The refinement mechanism of Event-B makes it possible to model context-aware

systems incrementally. We already know that Event-B provides both superposition

refinement and vertical refinement. In the former, the abstract variables are retained

in the concrete machine, with possibly some additional variables, hence it is suitable

for modeling a context-aware system which is often extended by adding new sensors.

• Static part: when a new sensor is added to the system, we may have to deal

with new context data types. Applying Rule 1, we formalize it as a new Event-B

context which extends the ones in abstract model.

• Dynamic part: We begin with abstract machines to model the general behavior of

the very beginning system, after that we refine these machines by concrete ones

to represent new requirements of the systems. In the refined machines, new added

variables can refer to new context data elements. The events of a new refined

machine can refine the abstract ones to describe the system more precisely.

4.3 A case study: Adaptive Cruise Control system

4.3.1 Initial description

ACC controls car’s speed is based on the driving conditions which are enhanced with

a context-aware feature such as target detection. The ACC system uses a sensor

to detect target in front of the car. The car has a maximum speed and is initially

set to a value. If the car does not detect a target then ACC increases the speed,

other wise decrease speed with constant amount. If the car is stopped and no target

detected then it is resumed with initial speed. The ACC must conform to a context

constraint such that the speed is always in safe range, i.e the speed is less or equal

to the maximum speed.



4.3.2 Modeling ACC system

In this scenario, there are three sensors, following the approach presented in Section

4.2, we specify the initial system with one abstract machine and one context, namely

ACC M 0 and Target (Figure 4.2).

CONTEXT Target

CONSTANTS

TARGET DETECTION

MAX SPEED

INC

AXIOMS

axm1 : TARGET DETECTION = BOOL

axm2 : MAX SPEED ∈ N
axm3 : INC < MAX SPEED

axm4 : INC ∈ N
END

EVENTS

Event TargetDetected =̂

when
grd1 : target det = TRUE

grd2 : speed > INC

then
act1 : speed := speed− INC

end

Event TargetUndetected =̂

when
grd1 : target det = FALSE

grd2 : speed < MAX SPEED− INC

then
act1 : speed := speed + INC

end

END

Figure 4.2: Events with strengthened guards

4.3.3 Refinement: Adding weather and road sensors

Weather and road sensors are attached to the system. Similarly to target detection

sensor, they send context data periodically to the system. Context rules of the

system are also extended for reacting to new added sensors as follows: “When a car

travels in a raining condition or sharp bend, ACC reduces car’s speed”. With new

sensors, the system need to fulfil the constraint such as “The speed can not be equal

to initial speed if it is raining or the road is sharp”.

Refined model: Following the method presented 4.2.2, context Weather Road ex-

tending context Target represents context data of new sensors. We add two events

for this machine. The first one representing a new added rule is not extended. This

event RainSharp describes the behavior of the system when sensors send data indi-

cating that it is raining or the road is sharp. While the second one TargetUndetected

refines event of the abstract model. The context constraint is formalized as an in-

variant cxt ct (Figure 4.3).

4.3.4 Verifying the system’s properties

Context constraints are translated to invariant clauses. Consequently, we prove

the system’s correctness by proving proof obligations of such invariants. The proof

obligations (PO) for these invariants of both abstract and refined machines as follows:

• Machine ACC M 0: “TargetDetected/ctx ct1/INV ” (Figure 4.2) and “TargetUn-

detected/ctx ct1/INV ”

• Machine ACC M 1: “TargetUndetected/ctx ct/INV ” and “RainSharp/ctx ct/INV ”

15



16 Chapter 5 Modeling and verifying imprecise system requirements

CONTEXT Weather Road

EXTENDS Target

CONSTANTS

RAINING

SHARP

AXIOMS

axm1 : RAINING = BOOL

axm2 : SHARP = BOOL

END

MACHINE ACC M1

REFINES ACC M0

SEES Weather Road

VARIABLES

isRain

speed

target det

isSharp

INVARIANTS

inv1 : isRain ∈ RAINING

cxt ct : isRain = TRUE ∨ isSharp = TRUE ⇒ speed <
MAX SPEED

inv3 : isSharp ∈ SHARP

EVENTS

Event TargetUndetected =̂

extends TargetUndetected

when
grd1 : target det = FALSE
grd2 : speed < MAX SPEED − INC
grd3 : isRain = FALSE

grd4 : isSharp = FALSE

then
act1 : speed := speed+ INC

end

Event RainSharp =̂

when
grd1 : isRain = TRUE ∨ isSharp = TRUE

then
act1 : speed := speed− INC

end

END

Figure 4.3: Refined Event-B model for ACC system

Table 4.2: Proof of context constraint preservation
target det = TRUE ⇒ speed < MAX SPEED
target det = TRUE
speed > INC TargetDetected/ctx ct1/INV
`
target det = TRUE ⇒ speed − INC < MAX SPEED

Chapter 5. Modeling and verifying impre-

cise system requirements
5.1 Introduction

Formal methods are mathematical techniques for describing system model prop-

erties. Such methods providing frameworks to specify and verify the correctness

of systems as well as event-driven ones requiring precise description. However, we
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often are faced with imprecise descriptions where ambiguous, vague or uncertain

terms such as “very cold”, “far”, or “low important”, are used because the stake-

holders usually do not care much about describing the system precisely. Therefore,

frameworks which are formal enough to be used for analysing as well as representing

imprecise requirements are desirable. The method with the Fuzzy set, proposed by

Zadeh, is one such formal framework, where the Fuzzy If-Then rules are sometimes

employed to represent imprecise system requirements. In general, system require-

ments include functional specifications, whose various properties are checked at this

same level of abstractions before starting further development steps. The require-

ments written in terms of Fuzzy If-Then rules can be an adequate representation,

but require further techniques for checking properties formally, which may eluci-

date perspectives different from those for detecting and resolving conflicts. The

Fuzzy If-then rules are translated into other formal frameworks such as PetriNet or

Z notation.

This chapter employs Event-B refinement to model event-driven systems which are

described by a set of Fuzzy If-Then rules. The contributions of this chapter are as fol-

lows: (1) providing a set of translation rules from the Fuzzy If-then rules to Event-B

language constructs (2) making use of Event-B refinement to formalize timed Fuzzy

If-Then rules. (3) Providing a set of translation rules to formalize eventualities by

Event-B language constructs, which makes use of the refinement modeling approach

that Event-B supports, (4) Demonstrating how both safety and eventuality proper-

ties of a set of the Fuzzy If-Then rules are verified with RODIN/Event-B.

5.2 Modeling fuzzy requirements

5.2.1 Representation of fuzzy terms in classical sets

Corollary 5.1. A collection of well-defined fuzzy requirements “If x is δY then m

is γP” can be specified by classical sets.

5.2.2 Modeling discrete states

We propose below partial transformation rules to map fuzzy requirements to Event-

B’s elements.

• Rule 1. All hedges δi , γi generators Yi and values Pi in the collection of require-

ments are translated to three sets δ, γ, Y , and P respectively. They are stated in

the SETS clause of FR C .

• Rule 2. Linguistic variables xi ,mi in each FRi are mapped to variables xi ,mi of

the Event-B machine FR M .

• Rule 3. Each variable xi is described as a membership of a Cartesian product of

two sets δ × Y , mi is described as a membership of a Cartesian product of two

sets γ × P (Corollary 5.1).
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• Rule 4. Each requirement FRi is modeled by an event evi in Event-B machine

FR M .

Figure 5.1 illustrates the Event-B specification after applying the translation rules.

CONTEXT FR C

SETS

γ

δ

P

Y

END

MACHINE FR M

SEES FR C

VARIABLES

x i

m i

INVARIANTS

inv1 : xi ∈ P (δ × Y)

inv2 : mi ∈ P (γ × P)

EVENTS

Event FRi =̂

when
grd1 : xi = {δi 7→ Yi}

then
act1 : mi := {γi 7→ Pi}
act2 : xi := {δj 7→ Yj}

end

END

Figure 5.1: A part of Event-B specification for discrete transitions modeling

5.2.3 Modeling continuous behavior

First, we define timed Fuzzy If-Then rules that has the form as follows: IF x(t)

is A THEN y(t) is B. Following the approach presented by J.Abrial, if a fuzzy

requirement FR i contains any time-dependent variable, then we will refine the

appropriated event of the abstract machine. We introduce two rules for modeling

continuous transitions the requirements as follows:

• Rule 5: If either variable x i or m i (in a fuzzy requirement FR i) attaches to

time-axis, then its corresponding event will be refined. A new variable t .t ∈ R for

representing time clock is added to the refined machine.

• Rule 6: The time dependent variables (in Rule 2) are replaced by time functions

and glue invariants in the refined machine.

5.3 Verifying safety and eventuality properties

5.3.1 Convergence in Event-B

Convergence property of an Event-B machine is the convergence of a set of its

events. It means that a set of events can not run forever. As a consequence, the

other events eventually happen. These events are called convergent events. To

prove this property, Event-B provides a mechanism to use an variant V which maps

to state variable v to a Natural number, then these events are proved to decrease

the variable v . More specifically, let e be a convergent event, v and v ′ are state

before/after executing e, then we prove that V (v ′) < V (v). Two proof obligation
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rules are generated for every convergent event where VAR ensures the decrement

of the variant and NAT makes sure that the variant is a natural number after the

event execution.

5.3.2 Safety and eventuality analysis in Event-B

Event-B provides the way to express safety properties directly by using the invari-

ants. Hence, we can prove the correctness of these properties using INV proof

obligation. Event-B does not support to specify liveness properties directly but we

can apply some recent research results to verify properties such as existence (�♦P),

progress (�(P1 ⇒ ♦P2)), persistence (♦�P), where P is any first order logic for-

mula, ♦ and � are standard operators of Linear Temporal Logic (LTL).

5.3.3 Modeling safety properties

Generally, safety properties are expressed directly by the invariants. Hence, safety

properties of a systems described by a collection of Fuzzy If-Then are translated

directly to invariants.

Corollary 5.2. With the modeling proposed in transformation rules, the safety prop-

erties are preserved by all actions in imprecise requirements of the system.

5.3.4 Modeling eventuality properties

We propose a refinement-based approach to modeling with an introduction of addi-

tional translation rules to extend the context and refine the machine of the abstract

model as follows

• Rule 7. Fuzzy values of each element in P ,Y and hedges δ are translated to total

functions degP → N, degyY : Y → N, degH : δ → N respectively.

• Rule 8: Adds a variant mapping to linguistic variable that appears in eventuality

property expression Q .

• Rule 9. Refines each event representing for fuzzy if-then requirements by two

events: a convergent and an ordinary one.

• Rule 10. Adds a clause ¬Q(xi) to the guards of each convergent event, and a

clause Q(xi) to the ordinary one.

• Rule 11. Deadlock free property is encoded as a theorem of the refined machine.

Definition 5.3 (Convergence). Fuzzy rules are convergent from a state Q(x ) if each

rule decreases value of variable x. It is formally defined as:

FRi ,Q(x ) ` x ′ < x where x ′ is value after executing rule FRi .

Definition 5.4 (Deadlock-freeness). Fuzzy rules are deadlock-free in a state Q(x )

if IF clause of at least one rule is satisfied. It is formally defined as

Q(x )⇒
n∨

i=1

(∃ xi .xi = δYi)
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Corollary 5.5. With proposed modeling translation rules, if a collection of Fuzzy

If-Then rules {FR} are convergent and deadlock-free from a first-order logic state

formula Q(x ) where x is a linguistic variable then the state property ¬Q(x ) will

always eventually holds. Formally, we have {FR} ` �♦¬Q(x ).

5.4 A case study: Container Crane Control

5.4.1 Case study description

A collection of fuzzy requirements FR is extracted as follows:

• FR1. if the crane is at starting position, then power is fast level

• FR2. if the distance to the container is far, then power is medium level

• FR3. if the distance to container is medium, then power is adjusted to slow level

• FR4. if the distance is close, then power is very slow level

• FR5. if the crane is above the container, then power is stopped.

The system has a safety property such that the speed of motor can not be high if

the target is not far (property I). The system needs to satisfy that the crane head

eventually is above the container from start position (property Q). Then we have

to check if {FR} ` I and {FR} ` �♦¬Q.

5.4.2 Modeling Container Crane Control system

5.4.2.1 Modeling the discrete behavior:

• Apply Rule 1 : Fuzzy hedges, generators and values in the collection of require-

ments are translated into the sets HEDGES, DISTANCE and POWER in an

Event-B context Crane C 0.

• Apply Rule 2 : The degree membership functions of hedges and fuzzy values are

presented as natural number-valued functions. For example: h deg : HEDGES →
N states one of hedges. We have another axiom for this function such as h deg(very) =

3 ∧ h deg(quite) = 2 ∧ h deg(precise) = 1.

• Apply Rule 3 : Linguistic variables in the requirements are translated into Event-B

constructs such as distance and power. Types of these two variables are represented

by invariants inv1 and inv2.

• Apply Rule 4 : Each imprecise requirement FRi of the system is translated to an

EVENT evti , i = 1, 5.

5.4.2.2 First refinement: Modeling the continuous behavior:

In fact, each movement of the Crane head is attaching to time axis as it is moving

continuously while the power is adjusted discontinuously. We apply proposed rules

to model the continuous behavior as follows:

• Apply Rule 5 : Five events are refined in the refined machine Crane M 1, variable

t (time counter) is added.
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• Apply Rule 6 : Replace dis by disc (the distance which is time-dependent). The

new variable of refined machine disc and one of abstract machine dis have a gluing

variant (inv3).

5.4.2.3 Second refinement: Modeling eventuality property

We perform the refinement strategy by following the method described in Section

5.3.4 to model the desired eventuality property. First, we apply Rule 7 to extend the

abstract context Crane C 0 to define Crane C1 by introducing three total functions

for numerical values of fuzzy sets. We refine the abstract machine Crane M1 to

have Crane M2 with five convergent events and five ordinary events (following Rule

9). The snippets below show event evt4 only.

CONTEXT Cranel C1
EXTENDS Crane C0
CONSTANTS

deg HED, deg POWER, d DIS

AXIOMS

axm4 : deg HED : HEDGES→ N
axm5 : deg HED(very) = 3 ∧ deg HED(quite) = 2

∧ deg HED(precise) = 1

END

Event evt4 CE =̂

Status convergent

extends evt4

when

grd1 : distance =

{precise 7→ close}
grd2 : d =

deg DIS(close)

grd3 : ¬d =

deg DIS(above)

then

act1 : power :=

{very 7→ slow}
act2 : distance :=

{precise 7→ above}
act2 : d :=

deg DIS(above)

end

Event evt4 OE =̂

Status ordinary

extends evt4

when

grd1 : distance =

{precise 7→ close}
grd2 : d =

deg DIS(close)

grd3 : d =

deg DIS(above)

then

act1 : power :=

{very 7→ slow}
act2 : distance :=

{precise 7→ above}
act2 : d :=

deg DIS(above)

end



5.4.3 Checking properties

The system has a safety property which is formalized as an invariant clause

inv4 : ran(dist) = {close} ⇒ ¬ran(power) = {fast}. Invariant preservation PO is

generated for each event of the machine Crane M 0. Table 5.1 shows the invariant

preservation PO for invariant inv4 of event evt4
Table 5.1: INV PO of event evt4

ran(dis) = {close} ⇒ ¬ran(speed) = {fast}
dis = {precise 7→ close} evt4/inv4/INV
`
ran ({precise 7→ above}) = {close} ⇒ ¬ran ({very 7→ slow}) = {fast}

We have to prove that eventually the crane loader will reach above position of

container, i.e. Crame M 1 ` �♦(d = deg DIS (above)). The deadlock-free property

of this machine is encoded as the theorem DELF in Crane M 1. Its proof obligation

is generated as DELF/THM .
Table 5.2: Deadlock free PO of machine Crane M 1

d = deg DIS (above)
⇒
d = deg DIS (start) ∨ d = deg DIS (far) DELF/THM
d = deg DIS (medium) ∨ d = deg DIS (close)
d = deg DIS (above)

In order to check the convergent property, proof obligations are generated for each

convergent events of machine Crane M 1 (evti/NAT and evti/VAR). Table 5.3 is

the proof obligation that shows event evt4 of machine Crame M 1 decrease variant

d .
Table 5.3: VAR PO of event evt4

dis = {precise 7→ close}
¬d = deg DIS (close)
d = deg DIS (close) evt4 CE/VAR
`
d − (deg DIS (close)− deg DIS (above)) < d

Chapter 6. Conclusions
6.1 Achievements

The research results of the thesis achieved the defined objectives. In the first part

of the thesis, instead of working on a reference model of event-driven architecture

which are more abstract and describe a larger class of systems, we focus on appli-

cations of two types of even-driven systems database systems including triggers and

context-ware systems. Two applications have particular properties and provided

functionalities. Though, in these systems, triggers and production rules have the

same structure which is in the form of ECA format. Our proposed methods are

based on the similar working mechanism of an ECA rule and an Event-B events.

For this reason, the modeling process is natural and easy. Furthermore, since we

22
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directly use Event-B to formalize the systems, we do not need any more intermediate

step to check the system correctness. A tool called Trigger2B is also developed to

support for automatically translating a database system to an Event-B model.

In the second part, the thesis also makes significant contributions on analyzing

event-driven systems specified by imprecise requirements. Although imprecise re-

quirements are often found in software development processes, few work have been

addressed the problem of modeling and verifying such descriptions so far. This

part presents a new specification and verification framework, in which the require-

ments were modeled in the Fuzzy If-Then rules. The rules were translated into a

set of Event-B descriptions so that the refinement-based modeling method could be

applied for the verification.

6.2 Limitations

• The proposed method for modeling and verifying database systems does not sup-

port to reason directly about termination property, while it is one of desired prop-

erties that developers want to check. It also just handle is simple case that contains

only a sequence of DML statements that does not contain nested statements and

full trigger syntax such as for/loop statements. In case that we want to formalize

any kind of triggers, we need to propose more efficient algorithms to parse and

translate their content. Moreover, this thesis also just handle with DML triggers

but do not consider other types of triggers.

• The proposed method for modeling context-aware systems already reuse Event-B

concept to represent context data. Due to lacking of primitive data type support in

Event-B, we can only enrich context data modeling by incorporating new plugins.

Context data is often complex and contains many types of data. Furthermore, a

real context-ware application often contains time related data. However, Event-B

does not support temporal logic, hence modeling and verifying such applications

will face several problems. The proposed method needs to be extended to model

time dependent variables.

• The method for modeling and verifying imprecise systems requirements handles

both cases of discrete and continuous behavior of the systems. It analyse both

safety and eventuality properties of the systems. We showed that the verification

was mostly conducted automatically using the current RODIN tool. However, due

to some limitation of the RODIN, we had to introduce a kind of approximation

to use N instead of R. Moreover, time related properties are not discussed yet.

Describing the behavior of the system by Fuzzy If-Then rules is also not gen-

eral enough. Besides eventuality properties, there are several liveness properties

are necessary to be verified to warranty the system correctness such as progress,

persistence. These kinds of properties are not mentioned yet.
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6.3 Future work

One of the thesis research direction is developing a Rodin plugin tool for database

trigger systems modeling. We also will handle more complex triggers with nested

DML statements combining with loop and condition statements. In case of complex

nested statements, we may need to apply composition techniques to model that

kind of triggers by composited events. Reasoning about termination property of

triggers is going to investigated along with considering more types of triggers is one

of our future work. We will extend the method for modeling method context-aware

systems by using the Theory plugin which allows to create and define semantics for

various kind of context data which are frequently used such as: time, location. The

proposed method will be extended to modeling more complex relationship between

contexts. Currently, there are several framework for describe context-aware. We

intend to directly map context specification language to Event-B. With proposed

method, a collection of imprecise requirements which are described by Fuzzy If-

Then rules can be specified by Event-B. It introduced a concept of timed Fuzzy

If-Then rules to model timed systems but it is not investigated deeply yet. For

example, the verification of the interesting properties which are time-dependent is

not discussed yet. Our future work in this direction will focus on analyzing such

properties. The current method for proving liveness properties is implemented at

the last refinement. Therefore, an enhancement that makes it possible to prove

liveness properties at every refinement stage is also an objective. Furthermore, the

theoretical background for liveness reasoning in Event-B also need to be extended

for general cases including fairness assumption. That also makes it possible to verify

the other important liveness properties such as persistence and progress.
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