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CHAPTER 1. INTRODUCTION 

1.1. Motivation 

Remotely-sensed images have been used for a long time in both 
military and civilization applications. The images could be collected 
from satellites, airborne platforms or Unmanned Aerial Vehicles 
(UAVs). Among the three, satellite images have gained popularity due 
to large coverage, available data and so on. In general, remotely-
sensed images store information about Earth object’s reflectance of 
lights, i.e. Sun’s light in passive remote sensing [1]. Therefore, the 
images contain itself lots of valuable information of the Earth’s surface 
or even under the surface.  

Applications of remotely-sensed images are diverse. For example, 
satellite images could be used in agriculture, forestry, geology, 
hydrology, sea ice, land cover mapping, ocean and coastal [1]. In 
agriculture, two important tasks are crop type mapping and crop 
monitoring. Crop type mapping is the process of identification crops 
and its distribution over an area. This is the first step to crop 
monitoring which includes crop yield estimation, crop condition 
assessment, and so on. To these aims, satellite images are efficient and 
reliable means to derive the required information [1]. In forestry, 
potential applications could be deforestation mapping, species 
identification and forest fire mapping. In the forest where human 
access is restricted, satellite imagery is an unique source of 
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information for management and monitoring purposes. In geology, 
satellite images could be used for structural mapping and terrain 
analysis. In hydrology, some possible applications cloud be flood 
delineation and mapping, river change detection, irrigation canal 
leakage detection, wetlands mapping and monitoring, soil moisture 
monitoring, and a lot of other researches. Iceberg detection and 
tracking is also done via satellite data. Furthermore, air pollution and 
meteorological monitoring could be possible from satellite 
perspective. In general, many of the applications more or less relate to 
land cover mapping, i.e. agriculture, flood mapping, forest mapping, 
sea ice mapping, and so on.  

Land cover (LC) is a term that refers to the material that lies above 
the surface of the Earth. Some examples of land covers are: plants, 
buildings, water and clouds. Land cover is the thing that reflects or 
radiates the Sun’s lights which then be captured by the satellite’s 
sensors. Land use and land cover classification (LULCC) has been 
considering as one of the most traditional and important applications 
in remote sensing since LULCC products are essential for a variety of 
environmental applications [2]. 

Regarding land cover classification (LCC), there are currently 
many researches around the world. These researches could be 
categorized by several criteria such as geographical scale of 
classification, multiple land covers classification or single land cover 
classification. For the former, LCC can be classified into regional or 
global studies. Regional studies focus on investigating LCC methods 
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for one or more specific regions. Global studies concern classification 
at global scale. 

Although there are many efforts to map land covers globally, the 
LC accuracies are still much lower than regional LC maps. This is 
understandable as there are many challenges in LCC at global scale 
including diversity of land-cover types, lack of ground-truth data, and 
so on [3]. In regional studies, the difficulties are more or less reduced, 
thus resulting in more accurate LC maps. Some typical regional LC 
studies could be mentioned, i.e. Hannes et al. investigated Landsat 
time series (2009 - 2012) for separating cropland and pasture in a 
heterogeneous Brazilian savannah landscape using random forest 
classifier and achieved and overall accuracy of 93% [4]. Xiaoping 
Zhang et al. used Landsat data to monitor impervious surface 
dynamics at Zhoushan islands from 2006 to 2011 and achieved overall 
accuracies of 86-88% [5]. Arvor et al. classified five crops in the state 
of Mato Grosso, Brazil using MODIS EVI time series and their OAs 
ranged from 74 – 85.5% [6].  

Although land-cover classification (LCC) mapping at medium to 
high spatial resolution is now easier due to availability of medium/high 
spatial resolution imagery such as Landsat 5/7/8 [7], in cloud-prone 
areas, deriving high resolution LCC maps from optical imagery is 
challenging because of infrequent satellite revisits and lack of cloud-
free data. This is even more pronounced in land cover with high 
temporal dynamics, i.e. paddy rice or seasonal crops, which require 
observation of key growing stages to correctly identify [8], [9]. 
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Vietnam is located in a tropical monsoon climate frequently covered 
by cloud [10], [11]. Some studies used high temporal resolution but 
low spatial resolution images (MODIS) [12]. Some studies employed 
single-image classifications [13]. However, common challenges of 
mono-temporal approaches include misclassification between bare 
land or impervious surface and vegetation cover type [14]. Whereas 
land cover classification using cloud-free Landsat scenes may lack 
enough observations to capture temporal dynamics of land-cover 
types. 

1.2. Objectives, contributions and thesis structure 

To date, land cover classification in cloud-prone areas is 
challenging. Furthermore, efficient LC methods for the regions, 
especially for areas with high temporal dynamics of land covers, are 
still limited. In this thesis, the aim is to propose a classification method 
for cloud-prone areas with high temporal dynamics of land-cover 
types. It is also the main contribution of the research to current 
development of land cover classification. To assess its classification 
performance, the proposed method is first tested in Hanoi, the capital 
city of Vietnam. Hanoi is one of the cloudiest areas on Earth and has 
diverse land covers. In particular, the results of this thesis could be 
applicable to other cloudy regions worldwide and to clearer ones also.   

This thesis is organized into five chapters. In chapter 1, I give an 
introduction to remotely-sensed data and its application in various 
domains. A problem statement is also presented. Theoretical 
backgrounds in remote sensing, compositing methods and land cover 
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classification methods are introduced in Chapter 2. Proposed method 
is presented in Chapter 3. Chapter 4 details experiments and results. 
Finally, some conclusions of my thesis are drawn in Chapter 5. 

CHAPTER 2. THEORETICAL BACKGROUND 

2.1. Remote sensing concepts 

Remote sensing is a science and art that acquires information about 
an object, an area or a phenomenon through the analysis of material 
obtained by specialized devices. These devices do not have a direct 
contact with the subject, area, or studied phenomena. 

Electromagnetic waves that are reflected or radiated from an object 
are the main source of information in remote sensing. A remote 
sensing image provides information about the objects in form of 
radiated energy in recorded wavelengths. Measurements and analyses 
of the spectral reflectance allow extraction of useful information of the 
ground. Equipments used to sense the electromagnetic waves are 
called sensor. Sensors are cameras or scanners mounted on carrying 
platforms. Platforms carrying sensors are called carrier, which can be 
airplanes, balloons, shuttles, or satellites. Figure 1 shows a typical 
scheme for remote sensing image acquisition. The main source of 
energy used in remote sensing is solar radiation. The electromagnetic 
waves are sensed by the sensor on the receiving carrier. Information 
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about the reflected energy could be processed and applied in many 
fields such as agriculture, forestry, geology, meteorology, 
environments and so on. 

A remote sensing system works in the following model: a beam of 
light, emitted by the sun/the satellite itself, firstly reaches the Earth 
surface. It is then partially absorbed, reflected and radiated back to the 
atmosphere. In the atmosphere, the beam may also be absorbed, 
reflected or radiated for another time. On the sky, the satellite's sensor 
will pick up the beam that is reflected back to it. After that it is the 
process of transmitting, receiving, processing and converting the 
radiated energy into image data. Finally, interpretation and analysis of 
the image is done to apply in real-life applications 

2.2. Satellite images 

Satellite images are images of Earth or other planets collected by 
observation satellites. The satellites are often operated by 
governmental agencies or businesses around the world. There are 
currently many Earth observation satellites and they have common 
characteristics including spatial resolution, spectral resolution, 
radiometric resolution and temporal resolution.  

2.3. Compositing methods  

Optical satellite images have a big drawback. In particular, they 
are heavily impacted by clouds. If a region is covered by clouds during 
its satellite passing time, the recorded data is considered lost. 
Therefore, methods for tackling clouds in optical satellite images have 
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been studied by many researchers. Pixel-based image compositing is a 
paradigm in remote sensing science that focuses on creating cloud-
free, radiometrically and phenologically consistent image composites. 
The image composites are spatially contiguous over large areas [15]. 
In the past, some compositing methods for low spatial resolution 
images (i.e. 500x500m or greater) were developed [16], [17]. Those 
methods were used primarily to reduce the impacts of clouds, aerosol 
contamination, data volume and view angle effects which are inherent 
in the images. Due to high temporal resolution of the satellites, the 
compositing methods were relatively simple, i.e. use maximum 
Normalized Difference Vegetation Index (NDVI) or minimum view 
angle to pick an appropriate observation for a target pixel. Since the 
opening of the Landsat archive, compositing methods for Landsat 
images have been developed and benefitted by pre-existing 
approaches for MODIS and AVHRR data.  

Recently, a number of best-available-pixel compositing (BAP) 
methods have been proposed for medium/high satellite images. 
Generally, BAP methods replace cloudy pixels with best-quality pixels 
from a set of candidates through rule-based procedures. Selection rules 
are based on spectral-related information, that is, maximum 
normalized difference vegetation index (NDVI) [18] and median near-
infrared (NIR) [19]. On another approach, Griffiths et al. proposed a 
BAP method ranking candidate pixels by score set such as distance to 
cloud/cloud shadow, year, and day-of-year (DOY) [20]. This method 
was improved by incorporating new scores for atmospheric opacity 
and sensor types [15]. Gómez et al. recently offered a review 
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emphasizing BAP potential for monitoring in cloud-persistent areas 
[21], which includes applications in forest biomass, recovery and 
species mapping [22]–[24], change detection applications [25], and 
general land-cover applications [26].   

2.4. Machine learning methods in land cover study 

Basically, LC classification is a type of classification on image 
data. Therefore, machine learning classifiers are also applicable to LC 
classification. In fact, there existed a huge amount of researches on 
machine learning classifiers in LCC. These methods range from 
simple thresholding to more advanced approaches such as maximum 
likelihood, logistic regression, decision tree (ID3, C4.5, C5), random 
forest, support vector machine (SVM), artificial neuron network 
(ANN) and so on [27]–[31], ensemble methods and deep learning. 
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CHAPTER 3. PROPOSE LAND-COVER STUDY 

METHODOLOGY 

3.1. Study area 

Hanoi is the capital of Vietnam, the country’s second largest city 
covering approximately 3,300 km2, located in the centre of Red River 
Delta (RRD). Hanoi has three basic kinds of terrain including a fertile 
delta, midland region and mountainous zone. Hanoi is mainly divided 
into agricultural area (56.6%) and non-agricultural area (40.6%) in 
2010 [32]. In agricultural areas, paddy rice is dominant (60.9%) 
followed by other crops such as maize as well as various vegetable 
crops. Paddy rice is planted two times per year, while crops are grown 
in other dedicated areas. Occasionally, short-season vegetable crops or 
aquaculture are grown before the start of the first rice season. Non-
agricultural areas are mostly covered by impervious surfaces and 
mosaicked natural landscape. Accordingly, I investigate seven LC 
classes for Hanoi including paddy rice, cropland, grass/shrub, trees, 
bare land, impervious area and water body. 

3.2. Data collection 

3.2.1. Reference data 

Official land-use data from Hanoi Environment and Natural 
Resources Department is used for training and testing data selection 
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[33]. The selection procedure is based on stratified random sampling 
method. This is done separately for training and testing data. And these 
datasets are guaranteed to share no same point on the ground. Since 
different land uses may contain the same land-cover types, I therefore 
generated 11 strata labelled as bare area, long-term crops, short-term 
crops, forest, grass, impervious area, mudflats, rice, water, others and 
overlap areas of the land use strata. Training and testing data are 
randomly sampled from the strata and then labelled into 7 classes using 
high resolution images of Google Earth and field data (Figure 12). 
Total numbers of training and testing data are 5079 and 2748 points  

3.2.2. Landsat 8 SR data 

To prepare imagery for the 2016 Hanoi land cover map, all Landsat 
8 Surface Reflectance (L8SR) images from 2013 to 2016 are collected 
from USGS Earth Explorer (https://earthexplorer.usgs.gov/). There 
are 54 available L8SR scenes which are not 100% cloud-
contaminated. As Hanoi is covered by two consecutive L8SR scenes 
per revisit, the resulting 27 images are mosaicked. 

3.2.3. Ancillary data 

Another ancillary data in this study is rice area statistics in 2016 
produced by Hanoi Statistics Office (http://thongkehanoi.gov.vn/). 
This statistics include rice planting area at provincial level. The official 
rice area is used to compare with satellite-derived rice areas. 
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3.3. Proposed method 

The proposed method includes four main parts. Firstly, all Landsat 
8 SR images are fed to compositing process to create a dense time 
series of cloud-free Landsat 8 images, i.e up to five images which is 
distributed across classification year (2016). After that, the composited 
images are used to extract spectral-temporal features. There will be 
three independent classifications. The first is classification using 
single image only (single-image classification), the second 
classification uses the whole time-series images with a single classifier 
(XGBoost), last classification is an improved version of the second 
classification with an addition of more features and ensemble of more 
strong classifiers. Finally, those classification models are validated 
against the testing data and statistical data as presented in previous 
sections.  
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Figure 1. Overall flowchart of the method 

3.3.1. Generation of composite images 

The purpose of this step is to generate a dense, cloud-free time 
series to capture major spectral variations for 2016 land cover 
classification. The target images for compositing were the 5 clearest 
L8SR images from: 16th May 2016 (DOY 137), 1st June 2016 (DOY 
153), 17th June 2016 (DOY 169), 21st September 2016 (DOY 265), 
and 7th October 2016 (DOY 281). These images were the targets for 
the compositing process which replaces their own cloud/cloud shadow 
pixels with best quality pixels from the above potential candidate 
images based on a scoring method described below.  

For each target image, clear pixels remain while cloudy pixels are 
replaced by a clear observation selected from the candidates. I 
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combine two BAP methods proposed in Griffiths et al. (2013) and 
White et al. (2014) and modify the opacity score for compatibility with 
L8SR data. For each clear pixel in a candidate image, a score is 
computed based on 4 sub-scores: year score, DOY score, opacity score 
and distance from cloud/cloud shadow pixel. Year score, DOY score 
and distance to cloud/cloud shadow are computed following Griffiths 
et al. (2013). Year scores decrease with distance from target year 
(2016) to support years (2015, 2014, 2013). DOY scores reflect ranges 
of target day and support days following Gaussian distribution. 
Distance to cloud/cloud shadow is calculated by a Sigmoid function of 
distances from the pixel to cloud/cloud shadow, obtained from the file 
sr_cfmask (Zhu, Wang, and Woodcock 2015), in radius of 50 pixels 
around. The opacity score requires an aerosol image as input (White 
et al. 2014), but L8SR provides only discrete aerosol information (i.e. 
4 aerosol levels) in the sr_cloud files. Therefore, I assign opacity 
scores to the aerosol levels using a Sigmoid function. Finally, a pixel's 
score is derived by summing the four sub-scores. The candidate pixel 
owning the greatest score is chosen to replace the clouded pixel in the 
target image (Table 5). 

3.3.2. Land cover classification 

Three classification methods are investigated as in Figure 2. First, 
an XGBoost classifier is applied on 7 spectral bands of each composite 
image to obtain 5 LC maps for 2016. The second is time-series 
classification using XGBoost classifier on stack of 7 spectral bands of 
5 composites (i.e. 35 spectral-temporal features). After that, they are 
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compared to assess if a time-series of composites is better than 
individual composites for classification. The third improves the time-
series composite classification by adding Mean Standard Deviations 
(MSDs) of each band calculated from the composites. Five single 
classifiers (XGBoost, LR, SVM-RBF, SVM-Linear and MLP) and an 
ensemble model using majority voting (i.e. predicted class labels are 
voted by five classifiers having the same weight) are compared. The 
selection of these classifiers is due to wide applications for LCC using 
SVM and MLP (Foody and Mathur 2004; Kavzoglu and Mather 2003) 
and  LR (Mallinis and Koutsias 2008) reported in literature. 
Additionally, XGBoost is investigated due to novelty (Chen and 
Guestrin 2016) and current lack of LCC applications.   

All of these classifiers have specific hyper-parameters that require 
tuning for the best classification performance. Specifically, SVM-
RBF’s hyper-parameters are penalty (C) and gamma. SVM-Linear 
requires penalty (C) only. Important hyper-parameters forming a base 
architecture of MLP include activation function (activation), number 
of hidden layers (hidden layers) and number of hidden nodes in 
individual hidden layers (hidden nodes). Similar to SVM, LR also has  
a regularization parameter (C) for individual training data importance 
(Hackeling 2017). XGBoost has many hyper-parameters in which the 
three most important ones are the number of boosted trees 
(n_estimators) and two others for over-fitting prevention: maximum 
tree depth (max_depth) and minimum sum of weights of all 
observations required in a child (min_child_weight). 
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All classifications were performed on the same training and testing 
points with 10-fold cross validation to select best hyper-parameters for 
each classifier. Then all training data is used to train classifiers with 
best parameters. Testing sets are separated from training sets to assess 
trained classifiers. I used scikit-learn implementation of the classifiers 
in our experiments (http://scikit-learn.org). Scikit-learn is a python-
based machine learning library with robust tools and easy-to-use 
interface.  

3.4. Metrics for classification assessment 

Overall accuracy (OA), kappa coefficient, producer accuracy (PA), 
user accuracy (UA) and F1 score (F1) are used as evaluation metrics 
in this study [34], [35]. OA and kappa coefficient are computed for 
classification level.  

CHAPTER 4. EXPERIMENTS AND RESULTS 

4.1. Compositing results 

Before composition, the average cloud percentage over 5 target 
images is 20.54% where image at DOY 169 is cloudiest with 73.63% 
cloud pixels. After compositing, all images are at least 99.78% clear ( 
i.e. DOY 265). However, there are remaining cloudy pixels without 
replacement candidates. 2015 data mostly contributes to composition 
with 72.36%, followed by 2013 (22.04%), 2014 (5.55%) and 2016 
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(0.05%) data. 

Although pixel candidates are carefully selected by BAP, they are 
still spectrally different from neighbouring pixels of other candidate 
images. For example, for DOY 265 in Figure 4b, composite pixels 
over a rice planting area show different colour blocks. Some cloudy 
pixels are replaced by vegetated observations while others are replaced 
by flooded observations. This indicates selection of appropriate 
images has significant impact on BAP composites for areas with a high 
temporal dynamic of land-cover types, especially rice and agricultural 
areas. Thus, knowledge of local agricultural calendar could improve 
image selection for spectrally-uniform BAP composites. 

NDVI and Bare Soil Index (BSI) temporal profiles of seven land 
cover classes are presented in Figure 14. Seven classes can be divided 
into four distinct groups: (impervious area, bare land), paddy rice, 
water, and (tree, crop, grass and shrub). Due to cultivation practices, 
paddy rice’s NDVI and BSI temporal profile varies across the year.  

4.2. Assessment of land-cover classification based on point 

validation 

4.2.1. Yearly single composite classification versus yearly 

time-series composite classification 

Test set validation results are provided in Table 5. I found 
classifications using time-series composites outperformed all single-
image classifications with 10.03% higher OA and 0.13 higher kappa 
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coefficient on average. Single-image classification is also unstable as 
the results range from 68.43 – 76.38% for OA, 0.59 –0.68 for kappa 
coefficient. I found 3 out 5 single-image classifications achieved 
greater than 72% OA, except for the DOY169 and DOY265 which 
have large BAP pixels included with 73.60% and 24.76% respectively. 

Table 1. F1 score, F1 score average, OA and kappa coefficient for 7 land cover classes of 
six classification cases obtained using XGBoost. Best classification cases are written in 
bold. 

 
DOY 
137 

DOY 
153 

DOY 
169 

DOY 
265 

DOY 
281 

Time 
series 

Crop 0.50 0.39 0.36 0.33 0.40 0.58 

Bare land 0.06 0.26 0.04 0.17 0.14 0.22 
Paddy 
rice 

0.87 0.84 0.81 0.73 0.80 0.91 

Water 0.85 0.86 0.73 0.81 0.83 0.91 

Tree 0.67 0.70 0.66 0.65 0.74 0.80 
Impervio
us area 

0.84 0.87 0.78 0.83 0.86 0.90 

Grass/Shr
ub 

0.36 0.29 0.30 0.27 0.28 0.44 

F1 score 
average 

0.76 0.74 0.69 0.68 0.73 0.82 

OA (%) 76.4 75.7 69.7 68.4 73.6 82.8 
kappa 
coefficie
nt 

0.68 0.68 0.61 0.59 0.66 0.77 

Considering per-class accuracy, classification of vegetation classes 
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are significantly improved with time series classification, as those 
classes have high temporal dynamics best captured by multiple 
observations (Arvor et al. 2011; Kontgis, Schneider, and Ozdogan 
2015). From the results, rice in green stage in DOYs of 137, 153, 265 
is most confused with crop and grass/shrub. In DOY 169, rice fields 
are flooded, thus resulting in confusion of rice and water. In the last 
image, DOY 281, harvested rice is confused with bare land and 
impervious area. By integrating all confusing information in time-
series classification, rice are better separated from other vegetation 
classes with F1=0.91. 

Although most LC classes are better identified in time-series 
classification, bare land had confusion with impervious area 
(maximum F1=0.26, the time-series F1=0.22). This is attributed to the 
two classes having spectrally similar and stable reflectance through 
time, and a low number of training samples for bare land. Crop and 
grass/shrub are occasionally misclassified due to similar spectral 
signals and mixed pixels. Water is separable from other classes due to 
its unique spectral properties, but some water bodies are seasonally 
vegetated, leading to misclassification of water and vegetation. Thus, 
water also benefits from multiple image observations. 

4.2.2. Improvement of ensemble model against single-

classifier model 

For ensemble classification, the following single models with their 
optimized parameters are employed: i) XGBoost with 
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n_estimators=1000, max_depth=5, min_child_weight=1; ii) LR with 
C=1; iii) SVM-RBF with C=10, gamma=0.03125; iv) SVM-Linear 
with C=8; v) MLP with activation=tank, hidden layers=1, and hidden 
nodes=40. Classifiers perform on a stack of 35 spectral temporal 
features and 7 MSDs of spectral bands. Majority voting technique is 
employed for the ensemble model.  

Table 2. OA, kappa coefficient, F1 score average for each single-classifier and ensemble 
model. Best classification cases are written in bold. 

Measure 

Classifier 

XGBoost LR 
SVM-
RBF 

SVM-
Linear

MLP Ensemble 

OA (%) 83.2 82.6 82.9 81.9 83.1 84.0 
kappa 
coefficient 

0.77 0.77 0.78 0.77 0.78 0.79 

F1 score 
average 

0.82 0.82 0.83 0.83 0.83 0.84 

Using an ensemble of supervised classifiers improves the 
classification (Table 3). I found individual models have similar 
accuracies with SVM-Linear is the lowest at 81.94% OA and XGBoost 
is the highest with 83.23% OA. The ensemble model is better than all 
individual models with OA=83.96% and kappa coefficient=0.79. Per-
class accuracies of the ensemble model filter the best results from all 
single-classifier models. Classifier F1 score performance is presented 
in Figure 16.  
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Figure 2. F1 score for land-cover class obtained using multiple classifiers. 

XGBoost is not effective at classifying bare land (F1=0.23) and 
grass/shrub (F1=0.4), but this disadvantage is overcome by SVM-RBF 
and SVM-Linear with F1 of 0.35, 0.46 for bare land and 0.47, 0.49 for 
grass/shrub respectively. SVM-RBF and SVM-Linear are generally 
high performing. Paddy rice, impervious area, water and tree have 
similar accuracies between classifiers which could be explained as the 
classes are quite separable in this time-series domain. MLP is overall 
good compared to other classifiers, but it performs poorly on bare land 
(F1 = 0.27). Ensemble model achieved similar accuracies of paddy 
rice, water, tree and impervious areas as compared to other classifiers. 
However, for crop, grass/shrub and bare land which are easily 
confused with other classes (Figure 15), ensemble model generally 
achieved better classification accuracies than any single-classifier 
model. By integrating models, individual strengths remain, while 
weaknesses are reduced. Table 4 presents confusion matrix of the 
ensemble model with User Accuracy (UA) and Producer Accuracy 
(PA) for each class. 
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Table 3. Confusion matrix of ensemble model. 

 
Cro

p 

Bar
e 

lan
d 

Ric
e 

Wate
r 

Tre
e 

Impervio
us 

Grass/Shr
ub 

Refere
nce 
total 

UA 
(%) 

Crop 222 3 25 4 24 22 31 331 66.1 

Bare land 6 22 1 1 0 22 4 56 33.5 

Rice 37 0 581 16 2 3 7 646 91.6 
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4.3. Assessment of land-cover classification results based on 

map validation 

The LC map of the ensemble model is displayed in Figure 17. I 
found that paddy rice and impervious area are the dominant classes.  
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Figure 3. 2016 Land-cover map for Hanoi based on the most accurate classification using 

time-series composite imagery and the ensemble of five classifiers. 

According to (Office 2016), rice area in Hanoi for the spring-
summer season is approximately 99,454 ha. I computed rice area for 
the classification maps and compared to the official statistic. The 
ensemble rice map is closest to the official number, and slightly 
overestimates by 4,764 ha (4.79%). Additional classifiers are shown 
in (Table 9). 

To summary, the best land-cover map using the ensemble model 
achieved 83.91% OA with kappa coefficient of 0.79. This is in 
comparison to 72% OA using the unmodified compositing algorithm 
in a slightly larger region and a few additional land cover types [20]. 
Additional regional land cover mapping studies had generally good 
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accuracy with: 89% OA for forest/non-forest cover maps [19], 90% 
OA for urban landscape with dense time-series stack [36], 89% OA 
for land cover map in a less-cloudy region with automated pre-
processing and random forest [37], 89.42% OA in a recent rice/non-
rice cover study over Red River Delta with dense Landsat 8 time-series 
stack [38], and 84% OA in a recent land cover study over Hanoi 
employing radar to overcome clouds [39].  

Multi-year composition increases cloud-free pixels in composites, 
especially over cloud-persistent areas such as Hanoi, Vietnam. A time-
series composites with over 99% cloud-free pixels was developed. 
One disadvantage of this compositing is that it does not account for 
intra-annual vegetation phenology. However, using time-series 
composites still improves classification performance in comparison 
with any single composite classification. This is attributed to the 
effective representation of seasonal temporal dynamics of land-cover 
types. Among the top supervised classifiers, XGBoost performed best 
for land cover mapping. However, an ensemble model still improved 
classification results by promoting individual strengths and reducing 
weaknesses. This ensemble model is especially effective for confusing 
classes (bare land, crop, grass/shrub) but not already well-separated 
classes (paddy rice, water). In the future, image composition 
accounting for phenology could improve composite quality and 
classification accuracy for improved mapping of land cover types with 
high temporal dynamics. 
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CHAPTER 5. CONCLUSION 

In this thesis, I have conducted a research on land cover 
classification using Landsat 8 satellite images. Specifically, I have 
presented in this thesis: (i) fundamental concepts of remote sensing 
sciences, (ii) satellite images and its applications in various domains, 
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(iii) land cover classification problems. A comprehensive review of 
land cover classification methods has been conducted to address its 
current developments. LCC is a traditional application in remote 
sensing. Many LCC studies have been conducted in different places 
on Earth. However, LCC using optical satellite images in cloud-prone 
areas with high temporal dynamics of land covers is still challenging 
due to lack of cloud-free data. In this thesis, I have proposed a LCC 
method for these areas. The result of this research is also published in 
the International Journal of Remote Sensing (Taylor & Francis) in a 
paper entitled “Improvement of land-cover classification over 

frequently cloud-covered areas using Landsat 8 time-series 
composites and an ensemble of supervised classifiers”.   

In this thesis, I have proposed a LCC method for these areas. 
Firstly, a dense time-series of composite images was constructed from 
all available multi-year Landsat 8 images over the study area. A 
modified compositing method was proposed for the compositing 
process using Landsat 8 SR images. The result images are almost 
cloud-free thus are ready for feature extraction. An ensemble of five 
experimentally strongest supervised classifiers in the experiments was 
built to classify a stack of composite images and additional features 
(Mean Standard Deviations). The best land-cover map achieved 
83.91% OA with kappa coefficient of 0.79. Some conclusions could 
be drawn from the research including: (i) multi-year composition 
increases cloud-free pixels in composites, especially over cloud-
persistent areas such as Hanoi, Vietnam; (ii) accurate land cover maps 
could be derived from time-series composite images; (iii) ensemble 
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learning could slightly improve classification as compared to any 
single-classifier model, however, significant improvements are 
observed for confusing classes as in single model, but not for well-
separated classes.  

There are also some remaining problems including: (i) The 
compositing method does not account for intra-annual vegetation 
phenology thus may not be good enough for some land covers like 
paddy rice; (ii) there are still significant confusions between bare 
land/impervious surface, grass/crops/trees due to their similar spectral 
characteristics, even in temporal domain. Therefore, future researches 
could be placed on improvement of compositing methods for high 
temporal dynamics land covers. And development of LCC methods 
for better separating of bare land/impervious surface, 
grass/crops/trees. 
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