
  

1 

 

 
VIETNAM NATIONAL UNIVERSITY, HANOI 

UNIVERSITY OF ENGINEERING AND TECHNOLOGY 

 

 

 

 

 

Dinh Trung Anh 

 

 

DEPTH ESTIMATION FOR MULTI-VIEW VIDEO 

CODING 

 

 

 

Major: Computer Science 

 

 

 

HA NOI - 2015 

http://test.uet.vnu.vn/


  

2 

 

 

 

VIETNAM NATIONAL UNIVERSITY, HANOI 

UNIVERSITY OF ENGINEERING AND TECHNOLOGY 

 

 

Dinh Trung Anh 

 

DEPTH ESTIMATION FOR MULTI-VIEW VIDEO 

CODING 

 

 

 

Major: Computer Science 

 

 Supervisor: Dr. Le Thanh Ha 

 Co-Supervisor: BS. Nguyen Minh Duc 

 

 

 

HA NOI – 2015 

VIETNAM NATIONAL UNIVERSITY, HANOI 

UNIVERSITY OF ENGINEERING AND TECHNOLOGY 

 

 

Dinh Trung Anh 

 

DEPTH ESTIMATION FOR MULTI-VIEW VIDEO 

CODING 

 

 

Major: Computer Science 

 

 Supervisor: Dr. Le Thanh Ha 

 Co-Supervisor: BSc. Nguyen Minh Duc 

 

 

 

HA NOI – 2015 



  

i 

 

AUTHORSHIP 

 

“I hereby declare that the work contained in this thesis is of my own and has not been 

previously submitted for a degree or diploma at this or any other higher education 

institution. To the best of my knowledge and belief, the thesis contains no materials 

previously published or written by another person except where due reference or 

acknowledgement is made.” 

 

Signature:……………………………………………… 

 

 

  



  

ii 

 

 

SUPERVISOR’S APPROVAL 

 

“I hereby approve that the thesis in its current form is ready for committee examination as 

a requirement for the Bachelor of Computer Science degree at the University of 

Engineering and Technology.” 

 

Signature:……………………………………………… 

 

  



  

iii 

 

ACKNOWLEDGEMENT 

 

Firstly, I would like to express my sincere gratitude to my advisers Dr. Le Thanh 

Ha of University of Engineering and Technology, Viet Nam National University, Hanoi 

and Bachelor Nguyen Minh Duc for their instructions, guidance and their research 

experiences. 

Secondly, I am grateful to thank all the teachers of University of Engineering and 

Technology, VNU for their invaluable lessons which I have learnt during my university 

life. 

I would like to also thank my friends in K56CA class, University of Engineering 

and Technology, VNU.  

Last but not least, I greatly appreciate all the help and support that members of 

Human Machine Interaction Laboratory of University of Engineering and Technology and 

Kotani Laboratory of Japan Advanced Institute of Science and Technology gave me during 

this project. 

       Hanoi, May 8th, 2015 

 

 

Dinh Trung Anh 

  



  

iv 

 

ABSTRACT 

With the advance of new technologies in the entertainment industry, the Free-

Viewpoint television (TV), the next generation of 3D medium, is going to give users a 

completely new experience of watching TV as they can freely change their viewpoints. 

Future TV is going to not only show but also let users “live” inside the 3D scene. A simple 

approach for free viewpoint TV is to use current multi-view video technology, which uses 

a system of multiple cameras to capture the scene. The views at positions where there is a 

lack of camera viewpoints must be synthesized with the support of depth information. This 

thesis is to study Depth Estimation Reference Software (DERS) of Moving Pictures Expert 

Group (MPEG) which is a reference software for estimating depth from color videos 

captured by multi-view cameras. It also provides a method, which uses stored background 

information to improve the depth quality taken from the reference software. The 

experimental results exhibit the quality improvement of the depth maps estimated from the 

proposed method in comparison with those from the traditional method in some cases. 

 

Keywords: Multi-view Video Coding, Depth Estimation Reference Software, 

Graph Cut. 
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TÓM TẮT 

Với sự phát triển của công nghệ mới trong ngành công nghiệp giải trí, ti vi góc nhìn 

tự do, thế hệ tiếp theo của phương tiện truyền thông, sẽ cho người dùng một trải nghiệm 

hoàn toàn mới về ti vi khi họ có thể tự do thay đổi góc nhìn. Ti vi tương lai sẽ không chỉ 

hiển thị hình ảnh mà còn cho người dùng “sống” trong khung cảnh 3D. Một hướng tiếp 

cận đơn giản cho ti vi đa góc nhìn là sử dụng công nghệ hiện có của video đa góc nhìn với 

cả một hệ thống máy quay để chụp lại khung cảnh. Hình ảnh ở các góc nhìn không có 

camera phải được tổng hợp với sự hỗ trợ của thông tin độ sâu. Luận văn này sẽ tìm hiểu về 

Depth Estimation Reference Software (DERS) của Moving Pictures Expert Group 

(MPEG), phần mềm tham khảo để ước lượng độ sâu từ các video màu chụp bởi các máy 

quay đa góc nhìn. Đồng thời khóa luận cũng sẽ đưa ra phương pháp mới sử dụng lưu trữ 

thông tin nền để cải tiến phần mềm tham khảo. Kết quả thí nghiệm cho thấy sự cái thiện 

chất lượng ảnh độ sâu của phương pháp được đề xuất khi so sánh với phương pháp truyền 

thống trong một số trường hợp. 

Từ khóa: Nén video đa góc nhìn, Phần mềm Ứớc lượng Độ sâu Tham khảo, Cắt 

trên Đồ thị 
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Chapter 1 

INTRODUCTION 

1.1. Introduction and motivation 

The concept of free-viewpoint Television (FTV) was first proposed by Nagoya 

University at MPEG conference in 2001, focusing on creating a new generation of 3D 

medium which allows watchers to freely change their viewpoints [1]. To achieve this goal, 

MPEG has been conducting a range of international standardization activities divided into 

two phases: Multi-view Video Coding (MVC) and 3D Video (3DV). Multi-view Video 

Coding, the first phase of FTV, was started in March 2004 and completed in May 2009, 

targeting on the coding part of FTV from the ray captures of multi-view cameras, 

compression and transmission of images to synthesis of new views. On the other hand, the 

second phase 3DV started in April 2007 was about serving these 3D views on different 

types of 3D displays [1]. 

In the basic configuration of FTV system, as shown in the Figure 1, 3D scene is 

fully captured by a multi-camera system. The captured images are, then, corrected to 

eliminate “the misalignment and luminance differences of the cameras” [1]. Then, 

corresponding to each corrected image, a depth map is estimated. Along with the color 

images, these depth maps all are compressed and transmitted to the user side. The idea of 
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calculating the depth maps at sender sides and sending them along with the color images 

helps reducing the computational work of the receiver. Moreover, it allows FTV system to 

be able to show the infinite number of views based on the finite number of coding views 

[2]. After being uncompressed, the depth maps and existing views are used to generate new 

views, which fully describe the original 3D scene from any viewpoints which the users 

want. 

 

Figure 1. Basic configuration of FTV system [1]. 

Although depth estimation only works as an intermediate step in the whole coding 

process of MVC, it actually is a crucial part, since depth maps are the key idea to interpolate 

free viewpoints. In the sequences of MVC standardization activities, Depth Estimation 

Reference Software (DERS) was introduced to MPEG as a reference software for 

estimating depth maps from sequences of images captured by an array of multiple cameras. 

At first, there is only one fully automatic mode in DERS; however, as in many cases, the 

inefficiency of depth estimation of the automatic mode of DERS leads to the low quality 

of synthesized views, new semi-automatic modes were added to improve the performance 

of DERS and the quality of the synthesized views. These new modes, nevertheless, share 

a same feature which is that a very good frame having manual support but poor 

performance in the next ones. 

1.2. Objectives 

The objectives of this thesis are about understanding and learning technologies in 

the Depth Estimation Reference Software (DERS) of MPEG. Moreover, in this thesis, I 

introduce a new method to improve the performance of DERS called background 
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enhancement. The basic idea of this method is storing the background of the scenes and 

using them to estimate the separation between the foreground and the background. The 

color map and depth map of background are stored overtime from the first frame. Since the 

background does not change too much over the sequence, these maps can be used to support 

the depth estimation process in DERS. 

1.3. Organization of the thesis 

Chapter 2 is spent describing the theories, structures, techniques and modes of 

DERS. Among them, there is a temporal enhancement method, based on which, I 

developed a method to improve the performance of DERS. My method will be described 

clearly in Chapter 3. The setup and the results of experiments to compare the method with 

the original DERS is illustrated in Chapter 4 along with further discussion. The final 

Chapter, Chapter 5, will conclude the overall information of this thesis.   
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Chapter 2 

DEPTH ESTIMATION REFERENCE 

SOFTWARE 

2.1. Overview of Depth Estimation Reference Software 

In April 2008, Nagoya University for the first time has proposed the Depth 

Estimation Reference Software (DERS) to the 84th MPEG Conference in Archamps, 

France in the document [3]. In this document, Nagoya has provided all the specification 

and also the usage of DERS. The initial algorithm of DERS, nonetheless, had already been 

presented in previous MPEG documents [4] and [5]; it included three steps: a pixel 

matching step, a graph cut and a conversion step from disparity to depth. All of these 

techniques had already been used for years to estimate depth from stereo cameras. 

However, while a stereo camera consists of only two co-axial horizontally aligned cameras, 

a multi-view camera system often includes multiple cameras which are arranged as a linear 

or circular array. Moreover, the input of DERS is not only color images but also a sequence 

of images or a video, which requires a synchronization for the capture time of cameras in 

the system. The output of DERS, therefore, is also a sequence which each frame is a depth 

map corresponding to a frame of color sequences. Since the first version, many 

improvements have been made in order to enhance the quality of depth maps: Sub-pixel 

precision at DER1.1, temporal consistency at DERS 2.0, Block Matching and Plane Fitting 

at DER 3.0… However, because of the inefficiency of traditional automatic DERS, in 

DERS 4.0 and 4.9, semi-automatic modes and then reference mode have been respectively 

introduced as alternative approaches. In semi-automatic DERS (or SADERS), manual 
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input files are provided at some specific frames. With the power of temporal enhancement 

techniques, the manual information is propagated to next frames to support the depth 

estimation process. On the other hand, reference mode takes an existing depth sequence 

from another camera as a reference when it estimates a depth map for new views. Until the 

latest version of DERS, new techniques have been kept integrating into it to improve the 

performance. In July 2014, DERS software manual for DERS 6.1 has been released [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Modules of DERS 
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After six versions of DERS have been released, the configuration of DERS has 

become more and more intricate with various techniques and methods. Figure 2 shows the 

modules and the process of depth estimation of DERS. 

As it can be seen from Figure 2, while most of modules are optional, there are still 

two modules (matching cost and graph cut) that cannot be replaceable. As mentioned 

above, these two modules have existed from the initial version of DERS as the key for 

estimating depth. The process of estimating depth starts at each frame in the sequence with 

three images: left, center and right images. The center image is actually the frame at the 

center camera view and also the image we want to calculate the corresponding depth map. 

In order to do so, it is required to have a left image from the camera in the left of the center 

camera and a right image from the camera in the right of the center camera. It is also 

required that these images are synchronized in the capture time. These images are, then, 

passed to an optional sub-pixel precision module, which us interpolation methods to double 

or quadruple the size of the left and right images to increase the precision of depth 

estimation. The matching cost module, as its name, finds a value to match the pixel of the 

center image with those of left or right images. Although there are several methods to 

calculate the matching cost, values from these share a same property that the smaller they 

are, the higher chance two pixels are matched. These matching values are then modified as 

some additional information is added to them before it goes to the graph cut module. A 

global energy optimization technique, graph cut, is used to label each pixel to a suitable 

depth or disparity based on the matching cost values, additional information and the 

smoothness property. Segmentation can also be used to support the graph cut optimization 

process as it divides the center image into segments, pixels in each of which are likely to 

have the same depth. After the graph cut process, a depth map has already been generated; 

however, for better depth quality, the plane fitting and post processing steps can be 

optionally used. While the plane fitting method smoothens depth values of pixels in a 

segment by considering it as a plane in space, the post processing, which appears only in 

the semi-automatic modes, reapplies the manual information into the depth map. 
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Figure 3. Examples of the relation between disparity and depth of objects 
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2.2. Disparity - Depth Relation 

All algorithms to estimate depth for multi-view coding or even for stereo camera 

are all based on the relation between depth and disparity. “The term disparity can be looked 

upon as horizontal distance between two matching pixels” [7]. The Figure 3Error! 

eference source not found. can illustrate this relation. The three images in Figure 3 from 

top to bottom are taken respectively from Camera 37, 39 and 41 of Sequence Champagne 

of Nagoya University [8]. It can be seen that objects, which are further to the camera 

system, tend to move horizontally to the left less than the nearer ones. While the girl and 

the table, which is near the capture plane, moves over views, the furthest speaker nearly 

stays at its position in both three images. This phenomenon can be explained by camera 

pinhole model and mathematics with the Figure 4. 

 

Figure 4. The disparity is given by the difference 𝑑 = 𝑥𝐿 − 𝑥𝑅, where 𝑥𝐿 is 

the x-coordinate of the projected 3D coordinate 𝑥𝑃 onto the left camera image 

plane 𝐼𝑚𝐿 and 𝑥𝑅 is the x-coordinate of the projection onto the right image plane 

𝐼𝑚𝑅 [7]. 

From the Figure 4, [7] has proved that the distance of images of an object (or 

disparity) is inversely proportional to the depth of that object: 
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𝑑 = 𝑥𝐿 − 𝑥𝑅 = 𝑓 (
𝑥𝑃 + 𝑙

𝑧𝑃
−
𝑥𝑃 − 𝑙

𝑧𝑃
) =

2𝑓𝑙

𝑧𝑃
 (1) 

where  

𝑑 is the disparity or the distance of images of object-point 𝑃 captured by two 

cameras,  

𝑥𝐿, 𝑥𝑅 are the coordinates of images of object-point 𝑃 

𝑓 is the focal length of both cameras, 

2𝑙 is the distance between two cameras, 

𝑧𝑃 is the depth of the object-point 𝑃. 

 

 

As it was proved that the depth and the disparity of an object is inversely 

proportional, the problem of estimating the depth turned into that of calculating the 

disparity or finding a matching pixel for each pixels in the center image. 

2.3. Matching cost 

To calculate the disparity of each pixel in the center image, it is required to match 

those pixels with their correspondences in the left and the right images. As mentioned 

before, input images of DERS are all corrected to eliminate difference of illumination and 

synchronized in capture time. We, therefore, can assume that intensities of matching pixels 

of same object-points are almost similar. This assumption is also the key to estimate 

matching pixels. 

To reduce the complexity of computation, cameras are aligned horizontally. 

Moreover, the image sequences are all rectified, which makes the matching pixels align in 

a same horizontal level. In other words, instead of looking all over the left or right images 

for a single matching pixel, we only need to find it in one horizontal row. 
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Using two mentioned above ideas, matching cost or error cost functions are formed 

to help find the matching pixels. They all share the property that the smaller value the 

function responds the higher chance it is the matching pixel we are looking for. 

2.3.1. Pixel matching 

The pixel matching cost function is the simplest matching cost function in DERS. 

It appeared in DERS from the initial version introduced by Nagoya University in [4]. For 

each pixel in the center image and each disparity in a predefined range, DERS evaluates 

matching cost function by calculating the absolute intensity difference between the pixel 

in the center image and those in the left and right images respectively and choosing the 

minimum value. Therefore, the smaller result is that the more similar intensities of pixels 

and the more likely those pixels are matching. For more specific, we have the below 

formula: 

𝐶(𝑥, 𝑦, 𝑑) = min(𝐶𝐿(𝑥, 𝑦, 𝑑), 𝐶𝑅(𝑥, 𝑦, 𝑑)), (2) 

where  

𝐶𝐿(𝑥, 𝑦, 𝑑) =  |𝐼𝐶(𝑥, 𝑦) − 𝐼𝐿(𝑥 + 𝑑, 𝑦)|  

𝐶𝑅(𝑥, 𝑦, 𝑑) =  |𝐼𝐶(𝑥, 𝑦) − 𝐼𝑅(𝑥 − 𝑑, 𝑦)|  

2.3.2. Block matching 

To improve the performance of DERS, the document [9] presented a new matching 

method called block matching. While a pixel matching cost function compares pixel to 

pixel, the block matching cost function works with window comparison. For more specific, 

when matching two pixels with each other, the block matching method concerns about 

comparing windows containing those pixels. The main advantage of this method over the 

pixel matching method is that it reduces noise sensitivity. However, this advantage comes 

along with a disadvantage, which is loss of detail and more computation when a bigger 

window size is selected [7]. DERS, therefore, only uses 3x3 windows with matching pixels 

at their center: 
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𝐶(𝑥, 𝑦, 𝑑) = min(𝐶𝐿(𝑥, 𝑦, 𝑑), 𝐶𝑅(𝑥, 𝑦, 𝑑)), (3) 

Where  

𝐶𝐿(𝑥, 𝑦, 𝑑) =
1

9
∑ ∑ |𝐼𝑐(𝑖, 𝑗) − 𝐼𝐿(𝑖 + 𝑑, 𝑗)|

𝑦+1

𝑗=𝑦−1

𝑥+1

𝑖=𝑥−1

 

 

𝐶𝑅(𝑥, 𝑦, 𝑑) =
1

9
∑ ∑ |𝐼𝑐(𝑖, 𝑗) − 𝐼𝑅(𝑖 − 𝑑, 𝑗)|

𝑦+1

𝑗=𝑦−1

𝑥+1

𝑖=𝑥−1

 

 

For pixels at the corners or edges of images, where the 3x3 windows do not exist, 

pixel matching or smaller block matching (2x2, 2x3 or 3x2) are used. 

2.3.3. Soft-segmentation matching 

Similar to the block matching, soft-segmentation matching method also uses 

aggregation windows in comparison [10]. However, each pixel in the block window is 

weighted differently by its distance and intensity similarity to the center pixel; this feature 

resembles to the bilateral filtering technique [7]. Moreover, the size of window of soft-

segmentation in DERS can be changed in the configuration file and it is normally quite 

large as the default value is 24x24. Soft-segmentation matching, therefore, takes much 

more time for computing than block matching and pixel matching. Below is the formula of 

soft-segmentation matching cost function: 

𝐶(𝑥, 𝑦, 𝑑) = min(𝐶𝐿(𝑥, 𝑦, 𝑑), 𝐶𝑅(𝑥, 𝑦, 𝑑)), (4) 

where  

𝐶𝐿(𝑥, 𝑦, 𝑑) =
∑ 𝑊𝐿(𝑖, 𝑗, 𝑥, 𝑦)𝑊𝐶(𝑖 + 𝑑, 𝑗, 𝑥 + 𝑑, 𝑦)|𝐼𝐶(𝑖, 𝑗) − 𝐼𝐿(𝑖 + 𝑑, 𝑗)|(𝑖,𝑗)𝜖 𝑤(𝑥,𝑦)

∑ 𝑊𝐿(𝑖, 𝑗, 𝑥, 𝑦)𝑊𝐶(𝑖 + 𝑑, 𝑗, 𝑥 + 𝑑, 𝑦)(𝑖,𝑗)𝜖 𝑤(𝑥,𝑦)
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𝐶𝑅(𝑥, 𝑦, 𝑑) =
∑ 𝑊𝑅(𝑖, 𝑗, 𝑥, 𝑦)𝑊𝐶(𝑖 − 𝑑, 𝑗, 𝑥 − 𝑑, 𝑦)|𝐼𝐶(𝑖, 𝑗) − 𝐼𝑅(𝑖 − 𝑑, 𝑗)|(𝑖,𝑗) 𝜖 𝑤(𝑥,𝑦)

∑ 𝑊𝑅(𝑖, 𝑗, 𝑥, 𝑦)𝑊𝐶(𝑖 − 𝑑, 𝑗, 𝑥 − 𝑑, 𝑦)(𝑖,𝑗) 𝜖 𝑤(𝑥,𝑦)

 
 

and 

 𝑤(𝑥, 𝑦) is a soft-segmentation window center at (𝑥, 𝑦) 

𝑊(𝑖, 𝑗, 𝑥, 𝑦) is the weight function for the pixel (𝑖, 𝑗) in the window centered at 

(𝑥, 𝑦): 

 

𝑊(𝑖, 𝑗, 𝑥, 𝑦) = 𝑒
−
|𝐼(𝑥,𝑦)−𝐼(𝑖,𝑗)|

𝛾𝐶
−
|(𝑥,𝑦)−(𝑖,𝑗)|

𝛾𝑑  
 

2.3.4. Epipolar Search matching 

As mentioned above, all images are rectified to reduce the complexity in searching 

for matching pixels since we only have to make a search in a horizontal line instead of the 

whole image. However in document [11], authors from Poznan University of Technology 

pointed out that “in the case of sparse or circular camera arrangement”, rectification 

“distort the image at unacceptable level” as in Figure 5Error! Reference source not 

found..  

 

Figure 5. Exampled rectified pair of images from “Poznan_Game” 

sequence [11]. 
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They, therefore, suggested that instead of applying rectification to images before 

matching, DERS should do all kinds of matching methods (pixel, block or soft-

segmentation) along epipolar lines which can be calculated based on camera parameters 

[11] like in Figure 6.  

 

Figure 6. Explanation of epipolar line search [11]. 

2.4. Sub-pixel Precision 

Normally, a depth map is a grayscale image, whose pixels have values in range from 

0 to 255. However, the disparity value is only an integer staying in a range from 0 to no 

more than 100, which makes the disparity value and the depth value do not map injectively. 

In other words, in some cases, the integer disparity value does not match with the 

requirements of the depth value. That is why sub-pixel technique was brought to DERS in 

document [12]. The idea of sub-pixel technique is that estimating the disparity value 

accurately at sub-pixel precision by interpolating the left and right images on sub-pixel 

positions using bi-linear or bi-cubic filter (Figure 7). So that the half-pixel doubles the 

number of possible disparity values while the quarter-pixel quadruples it. Although sub-

pixel precision approach create a more accurate depth map, it required more computation 

as the size of the left and right images are multiplied (Figure 8). Moreover, in the case of 

epipolar line search matching method, since the search runs along epipolar line not only 

the horizontal row, not only the width but also the height of the left and right images are 

interpolated to double or quadruple of their sizes. 



  

14 

 

 

Figure 7. Matching precisions with searching in horizontal direction only [12] 

 

Although sub-pixel technique provides a more accurate depth map, in document 

[13], two authors Olgierd Stankiewicz and Krzysztof Wegner from Poznań University of 

Figure 8. Explanation of vertical up-sampling [11]. 
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Technology have made experiments to prove that “Pixel-precision mode in Depth 

Estimation Reference software has no impact on quality of synthesized views” (the final 

target of MVC). However, this mode is still kept as a part of DERS. 

2.5. Segmentation 

Unlike other process which affects directly to the center images in its path of 

transforming to depth images, segmentation is only a support step. For more specific, 

segmentation is applied to the center image to divide the image into segments, pixels of 

which have similar color values; this result, then, is provided to Graph Cut or Plane Fitting 

modules to create and improve the depth map. Segmentation technique is used because of 

the likelihood of similar intensities of pixels in a same object. In DERS, segmentation is 

implemented by using one in three segmentation functions of OpenCV: 

cvPyrMeanShiftFiltering, cvPyrSegmentation and cvKMeans2. Figure 9 is an example of 

segmentation: 

 

Figure 9. Color reassignment after Segmentation for invisibility. From (a) to 

(c): cvPyrMeanShiftFiltering, cvPyrSegmentation and cvKMeans2 [9]. 

However, the idea of using segmentation to support depth estimation also comes 

with a negative influence since the color segments are not always consistent with the depth 

areas. 
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2.6. Graph Cut 

Existed in DERS from the very initial version, Graph Cut is unarguably the most 

important step in the whole process of depth estimation of DERS. Graph Cut is a global 

optimization method which estimates disparities of all pixels of the center image at once 

by minimizing a single energy function formed by matching costs, relations between pixels 

and other additional information [7]. 

2.6.1. Energy Function 

In stereo research, there are two groups of methods to tackle the problem of 

assigning disparity values to each pixel. One of them is the group of local methods which 

estimates the disparity values only based on information in a neighborhood area around the 

pixel. On the other hand, the other group of global methods, which Graph Cut is one of 

them, tries to determine the disparity values of all pixels at once by using all information. 

All pixels are linked to each other in a single energy function that when it is optimized, it 

gives us the disparities of all pixels. This energy function consists of two terms: data term 

and smooth term: 

𝐸(𝑑) = 𝐸𝑑𝑎𝑡𝑎(𝑑) + λ𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) (5) 

where  

𝑑 is the disparity map and 𝑑(𝑥, 𝑦) is the disparity at pixel (𝑥, 𝑦) and 

λ is the configurable coefficient to balance values of data term and smooth 

term. 

 

The data term measures the dissimilarity of 𝑑 with existing information, while the 

smooth term concerns about the discontinuity of values between adjacent pixels in the 

disparity map. In the simplest version Graph Cut, the data term is a total aggregation of 

pixel matching costs at each pixel position and the smooth term is the absolute differences 

of adjacent pixels: 
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𝐸𝑑𝑎𝑡𝑎(𝑑) = ∑ 𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦))
(𝑥,𝑦) ∈ 𝐼𝐶

 (6) 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) =∑ ∑ 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑(𝑥, 𝑦), 𝑑(𝑖, 𝑗))

(𝑥,𝑦) 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 (𝑖,𝑗)(𝑖,𝑗)

 (7) 

where  

𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑, 𝑑′) =  |𝑑 − 𝑑′|  

The smooth term in the newer version is improved with the help of segmentation. 

As mentioned above, the segmentation based on pixel color can be used as support 

information for disparity estimation since the pixels on a same object likely have similar 

color: 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) =∑ ∑ 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑(𝑥, 𝑦), 𝑑(𝑖, 𝑗))

(𝑥,𝑦) 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 (𝑖,𝑗)(𝑖,𝑗)

 
(8) 

where  

𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑, 𝑑′) = 𝛽|𝑑 − 𝑑′|  

{
𝛽 = 1 𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑥, 𝑦) = 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑖, 𝑗)

0 < 𝛽 < 1 𝑖𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑥, 𝑦) ≠ 𝑠𝑒𝑔𝑚𝑒𝑛𝑡(𝑖, 𝑗)
 

 

With the improvement of matching cost functions, the data term also changes from 

the sum of pixel matching costs to that of block matching costs or that of soft-segmentation 

matching costs. Moreover, as MVC uses a multi-view camera system to record a 3D scene 

in sequences of images, the correlation between frames and frames, between images from 

different cameras can be used to have better estimation. The information from correlation 

between frames in a sequence, or temporal information, will be discussed in the Temporal 

Consistency Section of this Chapter. The usage of the information from different cameras 

is in the reference mode of DERS. However, I will not discuss more about it in this thesis. 
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2.6.2. Optimization 

Once the energy function has been built, minimizing values of this function will 

give us the small dissimilarity of disparity values with observed data (matching costs) and 

with other disparity values, which basically shows a good depth map. In order to optimize 

energy function, in [14], Graph Cut solution based on maximum flow/ minimum cut 

algorithm has been introduced. Although two approaches 𝛼 − 𝛽 𝑠𝑤𝑎𝑝  and 𝛼 −

𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 were presented, only 𝛼 − 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 was used in DERS. 

 

Figure 10. An example of 𝐺𝛼 for a 1D image. The set of pixels in the image is 

𝑉 =  {𝑝, 𝑞, 𝑟, 𝑠}  and the current partition is 𝑃 =  {𝑃1, 𝑃2, 𝑃𝛼}  where 𝑃1  = {𝑝} , 

𝑃2  = {𝑞,𝑟} , and 𝑃𝛼  = {𝑠} . Two auxiliary nodes 𝑎 =  𝑎{𝑝,𝑞} , 𝑏 =  𝑎{𝑟,𝑠}  are 

introduced between neighboring pixels separated in the current partition. Auxiliary 

nodes are added at the boundary of sets 𝑃𝑙 [14].   

At first, every pixels in the disparity map is set as 0. In each loop, every possible 

disparity values in our predefined range are used to apply 𝛼 − 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛. To optimize 

energy function, in each application of 𝛼 − 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛, the whole center image is turned 

into a graph which has pixels as its vertices. Two more nodes, a source and a sink, are 

added into the graph and are connected to other nodes. The source is the 𝛼 node while the 

sink is 𝛼̅. For each pair of adjacent pixels, if two pixels have already shared the same 

disparity value, there will exist an edge between two corresponding vertices in the graph; 
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if not, a new additional node is put in and linked to both of them and also to the sink. The 

Figure 10 illustrated this idea of Graph Cut. The edges of the graph are weighted differently 

based on the current labels of its terminals, which is shown in Table 1.  

Table 1. Weights assigned to edges in Graph Cut. 

Edge Weight For 

𝑡𝑝
𝛼̅ ∞ 𝑝(𝑥, 𝑦) ∈ 𝑃𝛼 

𝑡𝑝
𝛼̅ 𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) 𝑝(𝑥, 𝑦) ∉ 𝑃𝛼 

𝑡𝑝
𝛼 𝐶(𝑥, 𝑦, 𝛼) 𝑝(𝑥, 𝑦) ∈ 𝑃 

𝑒{𝑝,𝑎} 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑(𝑥, 𝑦), 𝛼) 𝑝(𝑥, 𝑦) 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑞(𝑖, 𝑗) 

𝑑(𝑥, 𝑦) ≠ 𝑑(𝑖, 𝑗) 

 

𝑒{𝑎,𝑞} 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝛼, 𝑑(𝑖, 𝑗)) 

𝑡𝑎
𝛼̅ 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑(𝑥, 𝑦), 𝑑(𝑖, 𝑗)) 

𝑒{𝑝,𝑞} 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑(𝑥, 𝑦), 𝛼) 
𝑝(𝑥, 𝑦) 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑞(𝑖, 𝑗) 

𝑑(𝑥, 𝑦) = 𝑑(𝑖, 𝑗) 

 

With the source, the sink and all the weights of edges, we can apply the minimum 

cut/maximum flow algorithm to find a cut through the graph. Figure 11, a smaller version 

of the graph after different kinds of cut are applied, has shown us a different way to divide 

two nodes into two group of 𝛼  disparity or not. As the minimum cut/maximum flow 

algorithm gives us optimal cut, it is guaranteed that each 𝛼 − 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 turns makes the 

energy function smaller. However, as it required a lot of computation work, normally only 

two loops are run. 
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Figure 11. Properties of a minimum cut 𝐶 on 𝐺𝛼 for two pixel 𝑝,q such that 

𝑑𝑝 ≠ 𝑑𝑞. Dotted lines show the edges cut by 𝐶and solid lines show the edges in the 

induced graph 𝐺(𝐶) = ⟨𝑉, 𝐸 − 𝐶⟩ [14]. 

2.6.3. Temporal Consistency 

In order to use the temporal information, some methods have been introduced to 

DERS, for example [15] and [16]. Nevertheless, only [16] has been kept in DERS 6.1. The 

depth map and color center image of the previous frame are kept as references in estimating 

the current frame. In Update Error module, when consistency of temporal information is 

required, a block motion size 16x16 is used to compare two color center images of adjacent 

frames. The motion search algorithm is applied only to target finding unchanged areas, 

which are called “background” in [16]. If the sum of absolute differences of corresponding 

pixel intensities between frames of all pixels in a 16x16 block is smaller than a specific 

threshold, the area of the block is considered as containing no motion. For all pixels in 

these unchanged areas, a new term is added into the data term of the energy function as: 

𝐸𝑑𝑎𝑡𝑎(𝑑) = ∑ 𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) + 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑥, 𝑦, 𝑑(𝑥, 𝑦))
(𝑥,𝑦) ∈ 𝐼𝐶

, (9) 

where  
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𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) = 𝛼|𝑑(𝑥, 𝑦) − 𝑑𝑝𝑟𝑒𝑣(𝑥, 𝑦)|  

And  

𝑑𝑝𝑟𝑒𝑣(𝑥, 𝑦) is the disparity value of pixel (𝑥, 𝑦) in the previous frame.  

𝛼 = {
1 𝑖𝑓 ∑ |𝐼𝑐(𝑖, 𝑗) − 𝐼𝑐𝑝𝑟𝑒𝑣(𝑖, 𝑗)|

(𝑖,𝑗) ∈ 𝑤(𝑥,𝑦)

< 𝑇ℎ𝑟𝑒𝑠𝑚𝑜𝑡𝑖𝑜𝑛

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

This new term adding a dissimilarity value into the overall energy function if there 

exists an inconsistency in the disparity values between frames. Graph cut itself will 

optimize the energy function to add this into the final disparity results. 

2.6.4. Results 

After Graph Cut, the disparity map is directly converted to the depth map by using 

the relation between depth and disparity. Figure 12 are examples of depth maps after Graph 

Cut. 

 

Figure 12. Depth maps after graph cut: Champagne and BookArrival [9]. 
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2.7. Plane Fitting 

Although the support information from segmentation has already been used in 

Graph Cut, Plane Fitting also uses this information again to improve the depth map quality. 

Plane fitting basically uses the idea that it considers each segments from the segmentation 

as a plane in the space and it fits the current depth map from Graph Cut module to models 

of space planes. Each plane in space is modeled with a formula: 

𝑑(𝑥, 𝑦)  =  𝑎𝑥 +  𝑏𝑦 +  𝑐 (10) 

To calculate the coefficients (𝑎, 𝑏, 𝑐) of the above formula, all the existed pixels of 

the segments are considered as a point in space at (𝑥, 𝑦, 𝑑). A least square fitting is used to 

fit the point into a map and calculate the coefficients: 

[

∑ 𝑥𝑖
2𝑚

𝑖=1 ∑ 𝑥𝑖𝑦𝑖
𝑚
𝑖=1 ∑ 𝑥𝑖

𝑚
𝑖=1

∑ 𝑥𝑖𝑦𝑖
𝑚
𝑖=1 ∑ 𝑦𝑖

2𝑚
𝑖=1

∑ 𝑥𝑖
𝑚
𝑖=1 ∑ 𝑦𝑖

𝑚
𝑖=1

∑ 𝑦𝑖
𝑚
𝑖=1

∑ 1𝑚
𝑖=1

] [
𝑎
𝑏
𝑐
] = [

∑ 𝑥𝑖𝑑𝑖
𝑚
𝑖=1

∑ 𝑦𝑖𝑑𝑖
𝑚
𝑖=1

∑ 𝑑𝑖
𝑚
𝑖=1

] [9] (11) 

After having the coefficients (𝑎, 𝑏, 𝑐) and the equation of the segment plane in 

space, the depth of each pixel-point is recalculated so that it really stays inside the plane.  

The result of the plane fitting is shown in Figure 13. 
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Figure 13. Depth maps after Plane Fitting. Left to Right:: 

cvPyrMeanShiftFiltering, cvPyrSegmentation and cvKMeans2. Top to bottom: 

Champagne, BookArrival [9]. 

2.8. Semi-automatic modes 

Because of the inefficiency of the automatic mode of DERS, in [17], semi-automatic 

DERS (SADERS) has been proposed. The objective of SADERS is to use additional 

manual information to improve the accuracy of the depth map result. Until now, there are 

three different modes of SADERS which has been integrated into DERS.  

2.8.1. First mode 

The first mode of SADERS is introduced as SADERS 1.0 in [17]. This mode targets 

in using the temporal consistency technique to propagate information from manual depths 

which can be created in some frames. Manual depth maps are provided at some frame 

positions. When DERS goes the depth map at these positions, it uses the manual depth 
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maps as results. In different frame positions, DERS uses these manual depth maps or 

previous estimated depth maps as references in the temporal consistency mode of Graph 

Cut. A flowchart of SADERS 1.0 is shown in Figure 14. 

 

Figure 14. Flow chart of the SADERS 1.0 algorithm [17]. 

2.8.2. Second mode 

The second mode of SADERS is provided in [18]. The new version of SADERS 

still uses the temporal consistency property to propagate manual information. However, 

instead of providing a whole depth map for DERS, it provides two different kinds of 

manual information (a manual disparity map and a manual edge map) which helps DERS 

itself make a more accurate estimation; it also provides a manual static map to enhance the 

temporal consistency (Figure 15). 
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Figure 15. Simplified flow diargram of the second mode of SADERS [18]. 

 

The manual disparity map contains areas with given disparity; however, not all the 

pixels of the center image are provided with their disparities but only “where automatic 

depth estimation fails to find an accurate value” [18]. This manual disparity map is used as 

the initialization for the data term of Graph Cut. The manual static map, on the other hand, 

shows areas whose depths are not changed over time so that the depths estimated by manual 

information are preserved. 

In initial stage: 

𝐸𝑑𝑎𝑡𝑎(𝑑) = {

𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦))  𝑖𝑓 𝑀𝐷(𝑥, 𝑦) = 0

0  𝑖𝑓 𝑀𝐷(𝑥, 𝑦) = 𝑑(𝑥, 𝑦)

2𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦))

 (12) 

In temporal stage: 
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𝐸𝑑𝑎𝑡𝑎(𝑑)

=

{
 
 

 
 
0 𝑖𝑓 𝑀𝑆(𝑥, 𝑦) = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) = 𝑑𝑖𝑛𝑖𝑡(𝑥, 𝑦)

2𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) 𝑖𝑓 𝑀𝑆(𝑥, 𝑦) = 𝑠𝑡𝑎𝑡𝑖𝑐  𝑎𝑛𝑑 𝑑(𝑥, 𝑦) ≠ 𝑑𝑖𝑛𝑖𝑡(𝑥, 𝑦)

𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) + 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) 𝑖𝑓 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 

𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(13) 

where 

temporal consistency:∑ |𝐼𝑐(𝑖, 𝑗) − 𝐼𝑐𝑝𝑟𝑒𝑣(𝑖, 𝑗)|(𝑖,𝑗) ∈ 𝑤(𝑥,𝑦) < 𝑇ℎ𝑟𝑒𝑠𝑚𝑜𝑡𝑖𝑜𝑛 like (9) 

 

The manual edge map is a binary map which is used to support the smooth term of 

the energy function since it provides the separation between different depth areas. A new 

scaling factor 𝛽 is added into the smooth term wherever the manual edge map indicates an 

edge. 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑑) =∑ ∑ 𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑(𝑥, 𝑦), 𝑑(𝑖, 𝑗))

(𝑥,𝑦) 𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 (𝑖,𝑗)(𝑖,𝑗)

 (14) 

where  

𝑉(𝑥, 𝑦, 𝑖, 𝑗, 𝑑, 𝑑′) = 𝛽|𝑑 − 𝑑′|  

{
𝛽 = 1 𝑖𝑓 𝑀𝐸(𝑥, 𝑦) = 0 𝑎𝑛𝑑 𝑀𝐸(𝑖, 𝑗) = 0

0 < 𝛽 < 1 𝑖𝑓 𝑀𝐸(𝑥, 𝑦) = 1 𝑜𝑟 𝑀𝐸(𝑖, 𝑗) = 1
  

In comparison with the first mode of SADERS, this mode takes less time in 

preparing manual information.  

Below are some results from the second mode: 
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Figure 16. Left to right: camera view, automatic depth result, semi-automatic 

depth result, manual disparity map, manual edge map. Top to bottom: BookArrival, 

Champagne, Newspaper, Doorflowers and BookArrival [18]. 

2.8.3. Third mode 

The third mode of SADERS is very same with the second one; it, however, 

preserved completely static areas of the manual static map and the unchanged areas 

detected by the temporal consistency technique by copying its depth value to next frames 

instead of using Graph Cut.  
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Chapter 3 

THE METHOD: BACKGROUND 

ENHANCEMENT 

3.1. Motivation example 

Although there are many modules and modes of DERS which is built to improve 

the performance of depth estimation process, DERS still shows the poor quality in depth 

estimation for low-textured area. The sequence Pantomime from [8] is an example for this 

sequence type with low-textured background. As can be seen from Figure 17, most of the 

background of Pantomime sequence is covered by dark black color. The low-textured area 

is difficult to estimate the depth because the matching costs (pixel matching cost, block 

matching cost or soft-segmentation matching cost) of pixels in this area are close to each 

other when the disparity value parameter changes. The pixels of the low-textured area, 

therefore, are easily affected by other textured pixels because of the smooth term of the 

energy function. For example, in SADERS, the first depth map is estimated with the help 

of manual information, which makes the depth of low-textured area quite accurate (Figure 

19.a); however, pixels near the textured area in next frame are rapidly influenced by the 

depth of their textured neighbors in next frames in Figure 18.b,c,d. 

Although SADERS works great in the first frame, it is unable to accurately separate 

the low-textured background with the textured foreground in the next frames. These 

examples of Pantomime motivate the method to improve performance of the DERS   
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Figure 17. Motivation example 

  

a) Frame 0 b) Frame 10 

  

c) Frame 123 d) Frame 219 

Figure 18. Frames of Depth sequence of Pantomime. Figure a and b have 

been processed for better visual effect. 
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3.2. Details of Background Enhancement 

The method which is called as Background Enhancement targets in improving the 

performance of DERS in the low-textured background situation in Pantomime sequences. 

Although with the help of manual information, DERS in semi-automatic mode has 

estimated a high quality depth map at the positions of manual frames, it fails to keep this 

success in the next frames (Figure 18). There are two reasons for this phenomenon. Firstly, 

because the low-textured background has low differences between matching costs of 

different disparity values, their smooth terms dominate their data terms in Graph Cut 

process, which makes their estimated depth results easily affected by those of textured 

pixels. Secondly, while the temporal consistency is the key to conserve the correct disparity 

value of the previous frame, it fails when detecting some non-motion background area as 

motion areas.  

The Figure 19 shows the result of the motion search used by temporal consistency 

techniques. White area illustrated the area without any motion, while the rest shows the 

motion-detected area. As it can be seen that there are back pixels around the clowns, which 

basically is the low-textured no-motion area. As motions are wrongly detected in these 

pixels, temporal consistency term (Section 2.6.3) is not added to their data term. Since they 

are low-textured, without the help of temporal consistency term, their data term is 

dominated by the smooth term and the foreground depth propagates to them. In their turn, 

they propagates the wrong depth result to their low-textured neighbors. 

To solve this problem, the method focuses on preventing the depth propagation from 

the foreground to the background by adding a background enhancement term into the data 

term of background pixels around motion. For more specific, as the background of a scene 

changes slower than the foreground, the intensities of pixels in the foreground do not 

change much over frames. The detected background of the previous frame, therefore, can 

be stored and used as the reference to discriminate the background from the foreground. In 

the method, two types of background maps including background intensity map and 

background depth map are stored over frames (Figure 20). To reduce the noise created by 

falsely estimate a foreground pixel as a background one, an exponential filter is applied to 

background intensity map. 
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Figure 19. Motion search 

𝐵𝐼(𝑥, 𝑦) = {

𝛼𝐵𝐼𝑝𝑟𝑒𝑣(𝑥, 𝑦) + (1 − 𝛼)𝐼𝑐(𝑥, 𝑦)𝑖𝑓 𝑑(𝑥, 𝑦) < 𝑇ℎ𝑟𝑒𝑠𝑏𝑔 𝑎𝑛𝑑 𝐵𝐼𝑝𝑟𝑒𝑣(𝑥, 𝑦) ≠ 255

𝐼𝑐(𝑥, 𝑦) 𝑖𝑓 𝑑(𝑥, 𝑦) < 𝑇ℎ𝑟𝑒𝑠𝑏𝑔𝑎𝑛𝑑 𝐵𝐼𝑝𝑟𝑒𝑣(𝑥, 𝑦) = 255

𝐵𝐼𝑝𝑟𝑒𝑣(𝑥, 𝑦) 𝑖𝑓 𝑑(𝑥, 𝑦) ≥  𝑇ℎ𝑟𝑒𝑠𝑏𝑔

 (15) 

𝐵𝐷(𝑥, 𝑦) = {
𝑑(𝑥, 𝑦) 𝑖𝑓 𝑑(𝑥, 𝑦) < 𝑇ℎ𝑟𝑒𝑠𝑏𝑔

𝐵𝐷(𝑥, 𝑦) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, (16) 

Where  

𝑇ℎ𝑟𝑒𝑠𝑏𝑔 is the depth threshold to separate the depth of foreground and that 

of background. 

 

As mentioned above, a background enhancement term is added into the data term 

to preserve the correct depth of previous frames: 

𝐸𝑑𝑎𝑡𝑎(𝑑)

=

{
 
 

 
 
0  𝑖𝑓 𝑀𝑆(𝑥, 𝑦) = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) = 𝑑𝑖𝑛𝑖𝑡(𝑥, 𝑦)

2𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) 𝑖𝑓 𝑀𝑆(𝑥, 𝑦) = 𝑠𝑡𝑎𝑡𝑖𝑐 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) ≠ 𝑑𝑖𝑛𝑖𝑡(𝑥, 𝑦)

𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) + 𝐶𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) 𝑖𝑓 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦

𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) + 𝐶𝑏𝑔𝑒𝑛ℎ𝑎𝑛𝑐𝑒(𝑥, 𝑦, 𝑑(𝑥, 𝑦)) 𝑖𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑒𝑛ℎ𝑎𝑛𝑐𝑒

𝐶(𝑥, 𝑦, 𝑑(𝑥, 𝑦))  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(17) 

where  
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temporal consistency:∑ |𝐼𝑐(𝑖, 𝑗) − 𝐼𝑐𝑝𝑟𝑒𝑣(𝑖, 𝑗)|(𝑖,𝑗) ∈ 𝑤(𝑥,𝑦) < 𝑇ℎ𝑟𝑒𝑠𝑚𝑜𝑡𝑖𝑜𝑛 like (9) 

background enhance: not temporal consistency and 

|𝐼𝑐(𝑥, 𝑦) − 𝐵𝐼(𝑥, 𝑦)| < 𝑇ℎ𝑟𝑒𝑠 

 

If there is the manual static map, it will be used firstly to change the data term. Then, 

block motion search 16x16 is applied to find the no motion area, which temporal 

consistency term is used to protect the depth of the previous frame. In detected motion area, 

intensities of pixels are compared with the stored intensities of pixels of the background 

intensity map to find the background of sequence and the background depth map is used 

as the reference for the previous depth. 

 

Figure 20. Background Intensity map and Background Depth map 
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Chapter 4 

RESULTS AND DISCUSSIONS 

4.1. Experiments Setup 

As the lack of the resource of the ground truth of Champagne and Pantomime, the 

experiments to test the result of new method base only the color input sequence. Figure 21 

shows the idea of the experiments. The color sequences from camera 38, 39 and 40 are 

used to estimate the depth sequence of Camera 39; those from camera 40, 41 and 42 are 

used to estimate the depth sequence of camera 41. Based on the existing depth and color 

sequences of camera 39 and camera 41, a color sequence from virtual camera 40 is 

synthesized and compared with that from real camera 40. The Peak Signal Noise Ratio 

(PSNR) index is calculated at each frame and used as the objective measurement for the 

quality of depth estimation in these experiments.  

𝑃𝑆𝑁𝑅 = 20 log10
max
(𝑥,𝑦)

|𝐼𝑜𝑟𝑖𝑔𝑖𝑛(𝑥,𝑦)|

√𝑀𝑆𝐸
, (18) 

Where  

𝑀𝑆𝐸 = ∑∑(𝐼𝑜𝑟𝑖𝑔𝑖𝑛(𝑥, 𝑦) − 𝐼𝑠𝑦𝑛(𝑥, 𝑦))
2

𝑛−1

𝑦=0

𝑚−1

𝑥=0

  

and     𝐼𝑜𝑟𝑖𝑔𝑖𝑛, 𝐼𝑠𝑦𝑛 is the original and synthesized images, respectively 

𝑚, 𝑛 is the width and height of both 𝐼𝑜𝑟𝑖𝑔𝑖𝑛 and 𝐼𝑠𝑦𝑛 
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“Greater resemblance between the images implies smaller RMSE and, as a result, 

larger PSNR” [19]. The PSNR index, therefore, measured the quality of the synthesized 

image. As all experiments used the same synthesize approach, implemented by the 

reference program of HEVC, the quality of synthesized images shows the quality of depth 

estimation.  

The sequences Champagne, Pantomime and Dog from [8] are used to test in these 

experiments. In the Champagne and Pantomime tests, the second mode of DERS are used, 

while the automatic DERS mode is used in the Dog test. DERS with the background 

enhancement method is compared with DERS without it. 

 

 

 

 

 

 

 

  

 

 

4.2. Results 

The comparison graphs of Figure 22 and Table 2 shows the results of the tests based 

on PSNR.  
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Figure 21. Experiment Setup 
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a) Pantomime 

 

b) Dog 

 

c) Champagne 

Figure 22. Experimental results. Red line: DERS with background 

enhancement. Blue line: DERS without background enhancement 
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Table 2. Average PSNR of experimental results 

Sequence PSNR of original DERS PSNR of proposed method 

Pantomime 35.2815140 35.6007700 

Dog 28.5028580 28.5094560 

Champagne 28.876678 28.835357 

The sequence Pantomime test - the motivation example - shows a positive result 

with the improvement of about 0.3 dB. In frame to frame comparison between two 

synthesized sequences from the Pantomime test, it shows that in the first 70 frames, the 

depth difference between foreground (two clowns) and the low-textured background is not 

too big (Figure 24.a, b), which makes the two synthesized sequences very resembling. After 

frame 70th, the difference is large; the propagation of the foreground depth happens 

strongly (Figure 24.d). The background enhancement method has successfully mitigate this 

process as in Figure 24.c, which makes the PSNR result increase. However, Figure 24.e 

shows that the background enhancement cannot stop completely this propagation process 

but only slow it down. The results from the Dog test show only insignificant 

improvement in the average PSNR of 0.007 dB. On the other hand, the Champagne test 

shows a negative result. Although the Champagne sequence has a low-textured background 

like the Pantomime, it has some features that the Pantomime does not have. Some 

foreground areas in the Champagne are very similar in color with the background. This 

leads to the wrong estimation these areas as background areas if we use background 

enhancement (Figure 23). 
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Figure 23. Failed case in sequence Champagne 

  

a) Background enhancement 10 b) Traditional DERS 10 

  
c) Background enhancement 123 d) Traditional DERS 123 

  

e) Background enhancement 219 f) Traditional DERS 219 

Figure 24. Comparison frame-to-frame of the Pantomime test. Figure a and 

b have been processed for better visual effect. 
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Chapter 5 

CONCLUSION 

In my opinion, Free-viewpoint Television (FTV) is going to be the future of television. 

However, there is still a long way to get there in both coding and display problems. The 

solution for multi-view video coding plus depth, in some cases, has helped to solve the 

problem of coding for FTV. However, it is still required more improvements in this area, 

especially in the depth estimation as it holds a key role to synthesize views from any 

viewpoints. MPEG is one of the leading group trying to standardize the Multi-view Video 

Coding process (including depth estimation) with different versions of reference software 

like Depth Estimation Reference Software (DERS) and View Synthesis Reference 

Software (VSRS). 

In this thesis, I have given the reader an insightful look into the structure, configuration 

and methods used in DERS. Moreover, I have proposed a new method called background 

enhancement to improve the performance of DERS, especially in the case of low-textured 

background. The experiments have shown positive results from the method in low-textured 

background area. However, it still has not successfully stopped the propagation of the depth 

of the foreground to background like the first expectation and has not estimated correctly 

foreground areas which have color similar to background. 

 



  

39 

 

REFERENCES 

 

[1]  M. Tanimoto, "Overview of FTV (free-viewpoint television)," in 

International Conference on Multimedia and Expo, New York, 2009.  

[2]  M. Tanimoto, "FTV and All-Around 3DTV," in Visual Communications and 

Image Processing, Tainan, 2011.  

[3]  M. Tanimoto, T. Fujii, K. Suzuki, N. Fukushima and Y. Mori, "Reference 

Softwares for Depth Estimation and View Synthesis," in ISO/IEC 

JTC1/SC29/WG11, M15377, Archamps, April 2008.  

[4]  M. Tanimoto, T. Fujii and K. Suzuki, "Multi-view depth map of Rena and 

Akko & Kayo," in ISO/IEC JTC1/SC29/WG11 M14888, Shenzhen, October 

2007.  

[5]  M. Tanimoto, T. Fujii and K. Suzuki, "Improvement of Depth Map 

Estimation and View Synthesis," in ISO/IEC JTC1/SC29/WG11 M15090, 

Antalya, January 2008.  

[6]  K. Wegner and O. Stankiewicz, "DERS Software Manual," in ISO/IEC 

JTC1/SC29/WG11 M34302, Sapporo, July 2014.  

[7]  A. Olofsson, "Modern Stereo Correspondence Algorithms: Investigation and 

evaluation," Linköping University, Linköping, 2010. 

[8]  T. Saito, "Nagoya University Multi-view Sequences Download List," 

Nagoya University, Fujii Laboratory, [Online]. Available: 

http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/. [Accessed 1 May 

2015]. 



  

40 

 

[9]  M. Tanimoto, T. Fujii and K. Suzuki, "Depth Estimation Reference Software 

(DERS) with Image Segmentation and Block Matching," in ISO/IEC 

JTC1/SC29/WG11 M16092, Lausanne, February 2009.  

[10]  O. Stankiewicz, K. Wegner and Poznań University of Technology, "An 

enhancement of Depth Estimation Reference Software with use of soft-

segmentation," in ISO/IEC JTC1/SC29/WG11 M16757, London, July 2009.  

[11]  O. Stankiewicz, K. Wegner, M. Tanimoto and M. Domański, "Enhanced 

Depth Estimation Reference Software (DERS) for Free-viewpoint 

Television," in ISO/IEC JTC1/SC29/WG11 M31518, Geneva, October 2013.  

[12]  S. Shimizu and H. Kimata, "Experimental Results on Depth Estimation and 

View Synthesis with sub-pixel precision," in ISO/IEC JTC1/SC29/WG11 

M15584, Hannover, July 2008.  

[13]  O. Stankiewicz and K. Wegner, "Analysis of sub-pixel precision in Depth 

Estimation Reference Software and View Synthesis Reference Software," in 

ISO/IEC JTC1/SC29/WG11 M16027, Lausanne, February 2009.  

[14]  Y. Boykov, O. Veksler and R. Zabih, "Fast Approximate Energy 

Minimization via Graph Cuts," Pattern Analysis and Machine Intelligence, 

vol. 23, no. 11, pp. 1222-1239, November 2001.  

[15]  M. Tanimoto, T. Fujii, M. T. Panahpour and M. Wildeboer, "Depth 

Estimation for Moving Camera Test Sequences," in ISO/IEC 

JTC1/SC29/WG11 M17208, Kyoto, January 2010.  

[16]  S.-B. Lee, C. Lee and Y.-S. Ho, "Temporal Consistency Enhancement of 

Background for Depth Estimation," 2008.  

[17]  G. Bang, J. Lee, N. Hur and J. Kim, "Depth Estimation algorithm in 

SADERS1.0," in ISO/IEC JTC1/SC29/WG11 M16411, Maui, April 2009.  

[18]  M. T. Panahpour, P. T. Mehrdad, N. Fukushima, T. Fujii, T. Yendo and M. 

Tanimoto, "A Semi-Automatic Depth Estimation Method for FTV," The 



  

41 

 

Journal of The Institute of Image Information and Television Engineers, vol. 

64, no. 11, pp. 1678-1684, 2010.  

[19]  D. Salomon, Data Compression: The Complete Reference, Springer, 2007.  

[20]  M. Tanimoto, T. Fujii and K. Suzuki, "Reference Software of Depth 

Estimation and View Synthesis for FTV/3DV," in ISO/IEC 

JTC1/SC29/WG11 M15836, Busan, October 2008.  

 

 

 

 


